

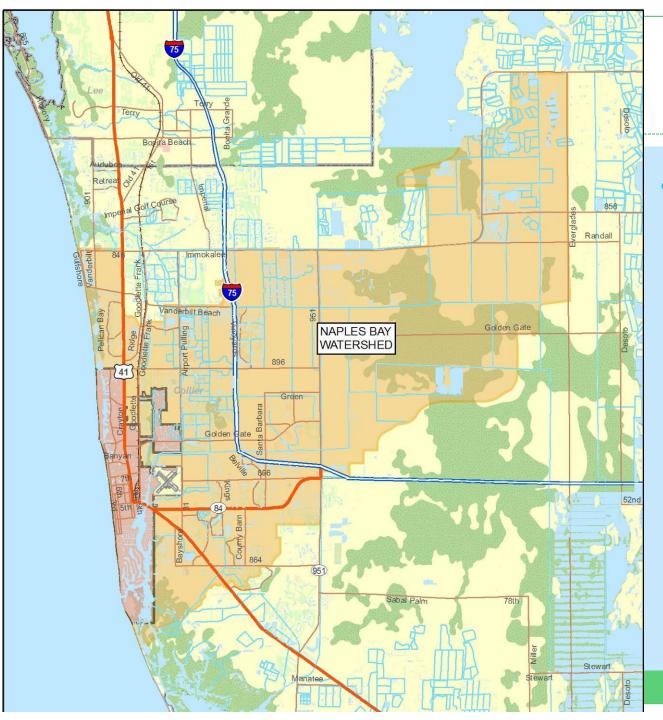
Stormwater Reuse Through Aquifer Storage & Recovery

CITY OF NAPLES, FLORIDA PRESENTED BY: GREGG R. STRAKALUSE, P.E. DIRECTOR-STREETS & STORMWATER DEPT.

APRIL 7, 2015

City of Naples, Florida

• Population: 20,537 (triples in-season with visitors)


Stormwater

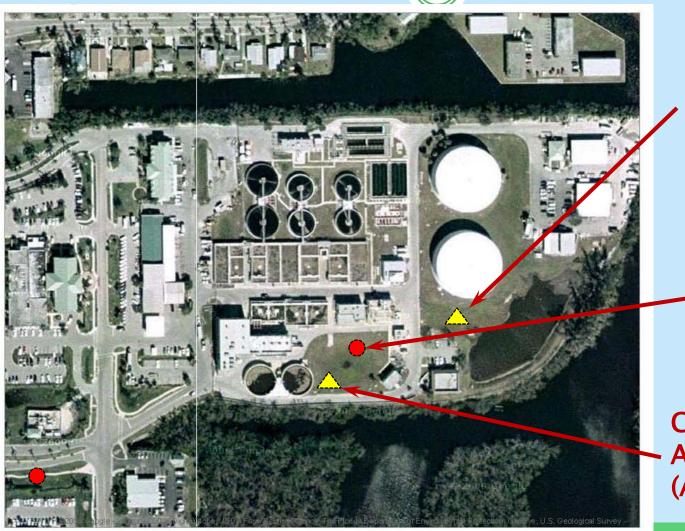
- Stormwater Utility (Fee is \$13.05 /ARU)
 - \$4.8 M per year
- Water Demand (17.33 MGD total)
 - Irrigation: 10.4 MGD (60%)
- Water Supply
 - Potable: 14.3 MGD
 - Treated Effluent 6.72 MGD
 - Golden Gate Main Canal
 - Stormwater Pump Station _

Naples BayBefore - (1950)After - (2000)

Watershed

- 120 sq. mi. AreaCity 6.8%
 - Impairments
 - Fresh Water
 - Nutrients (NAA)
 - o Iron
 - Copper
 - Bacteria

Background of overall program


- To develop up to 5 MGD of additional water sources
- To reduce consumption of potable water from 270 gallons per capita per day (GPCD) to below 200 GPCD
- To conserve existing potable water supply from the Lower Tamiami Aquifer
- To increase supply of supplemental water for irrigation
- To reduce reliance on expanded water treatment facilities
- To meet conditions of renewed water use permit, 100% reclaimed status

Water Availability

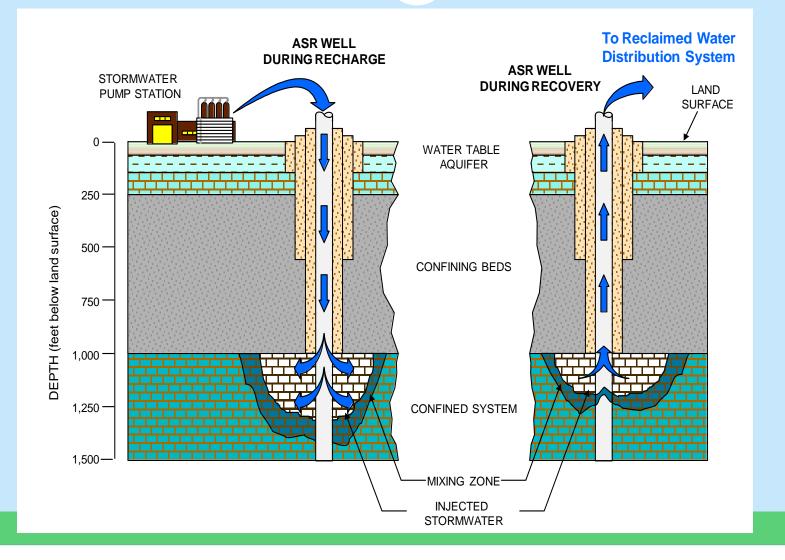
- Critical period is March through May
- Assume 30% recovery
- Volume to meet irrigation during critical period ~ 1,000,000,000 gallons (6.24 mgd for 90 days)
- One ASR well can deliver 1 to 2 MGD

Reclamation Plant Site Layout

ASR Well (ASR-1)

Convert Exploratory Well to Monitor Well

Construct ASR Well (ASR-2)


P. att

WIN HIM

ASR Well

1 # # #

Naples ASR Well Design

REGULATORY

10

Underground Source of Drinking Water (USDW)

An aquifer which supplies drinking water for human consumption and contains water with a total dissolved solids (TDS) concentration of less

than **10,000** mg/L or less

Confining Layers

To prevent upward migration into USDW

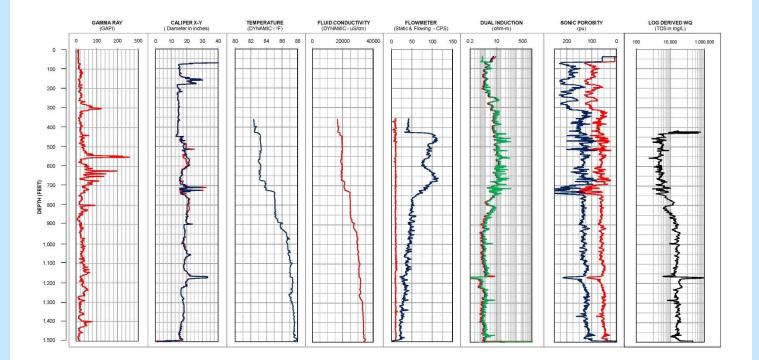
Exploratory Well Construction Permit

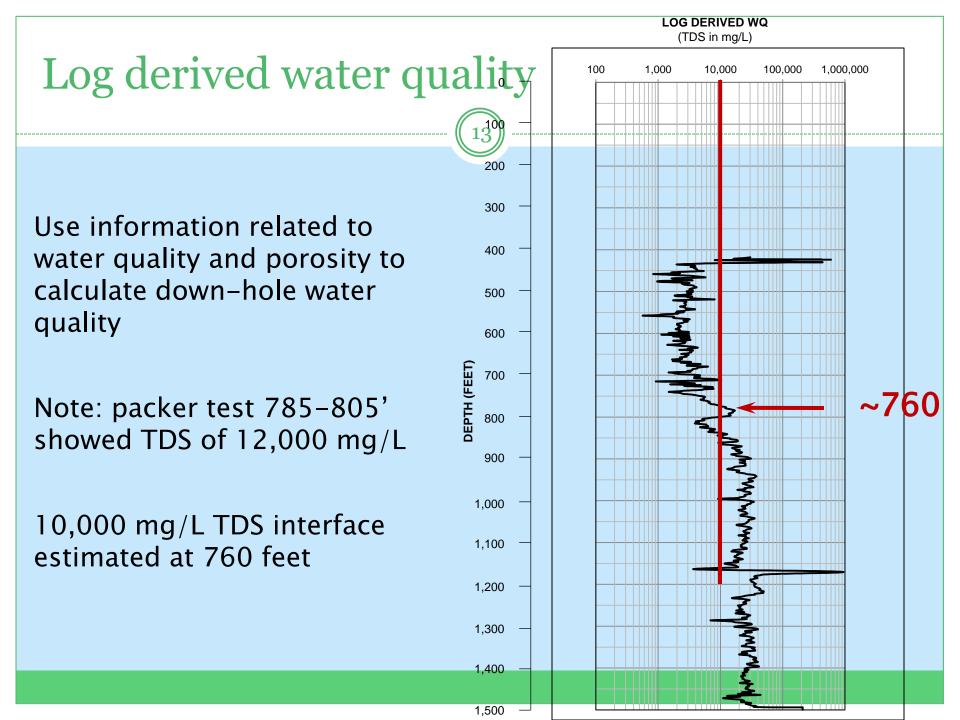
ASR Well Construction Permit

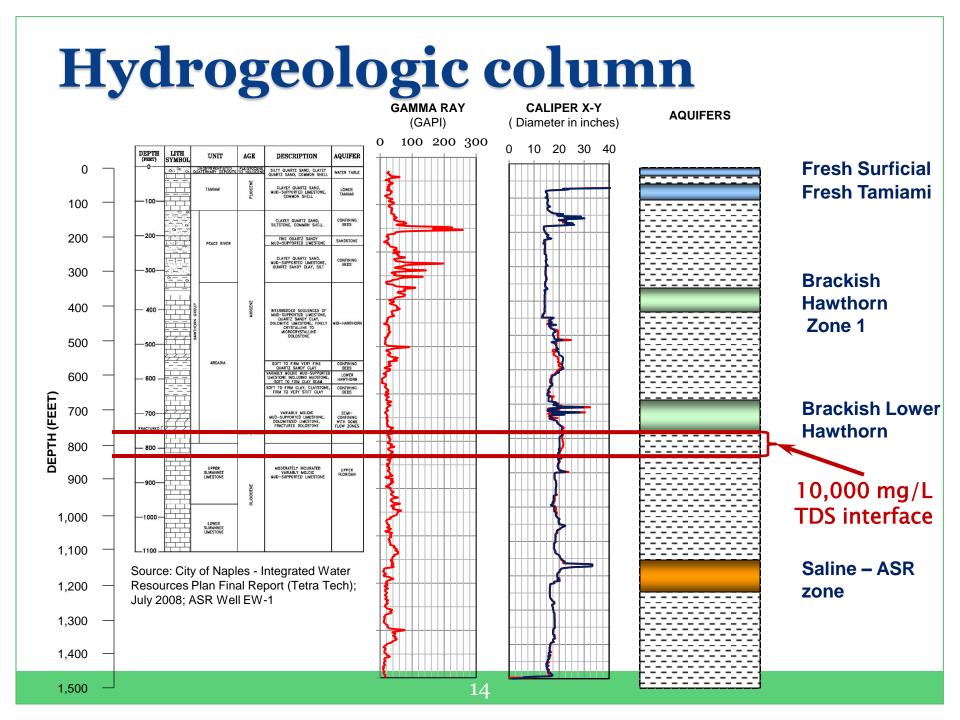
Cycle Testing the Storage Zone Permit

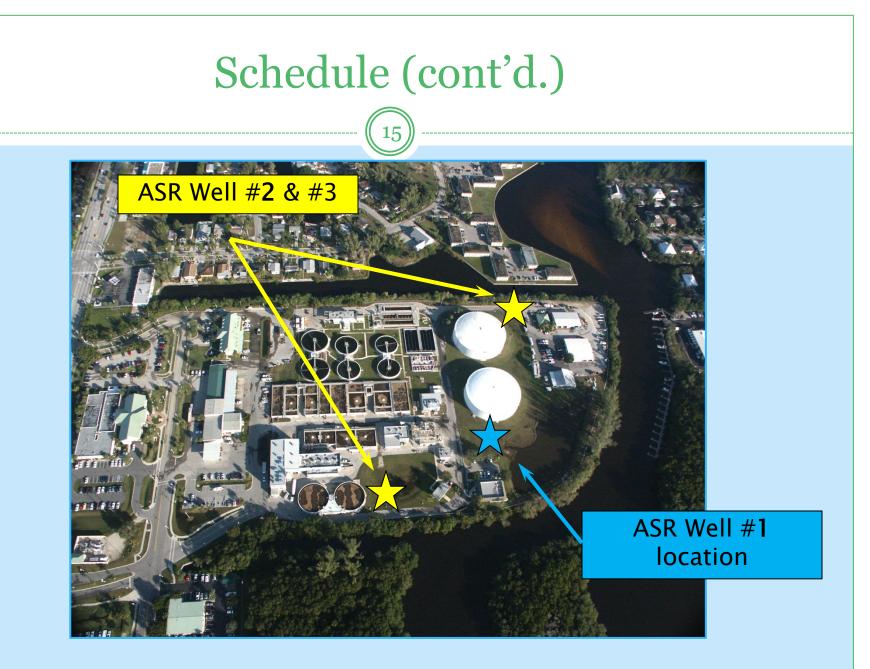
Operating Permit

UNDERGROUND CONDITIONS

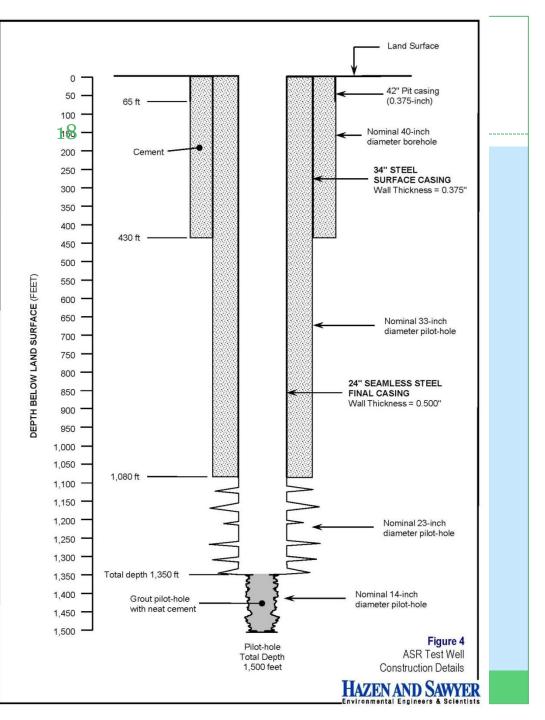

• Geophysical logging used to collect information of sub-surface conditions





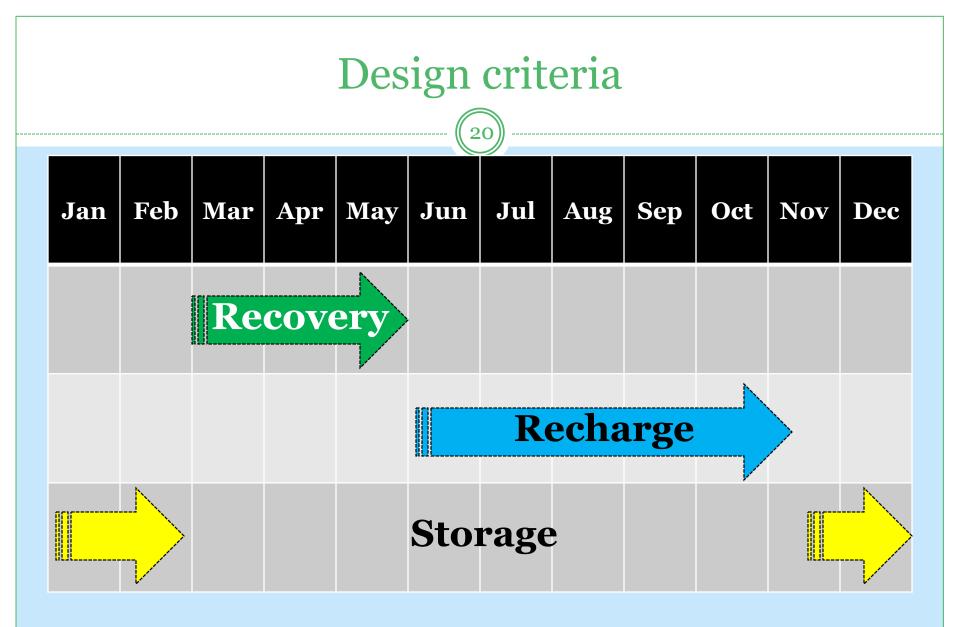

Geophysical logs

12

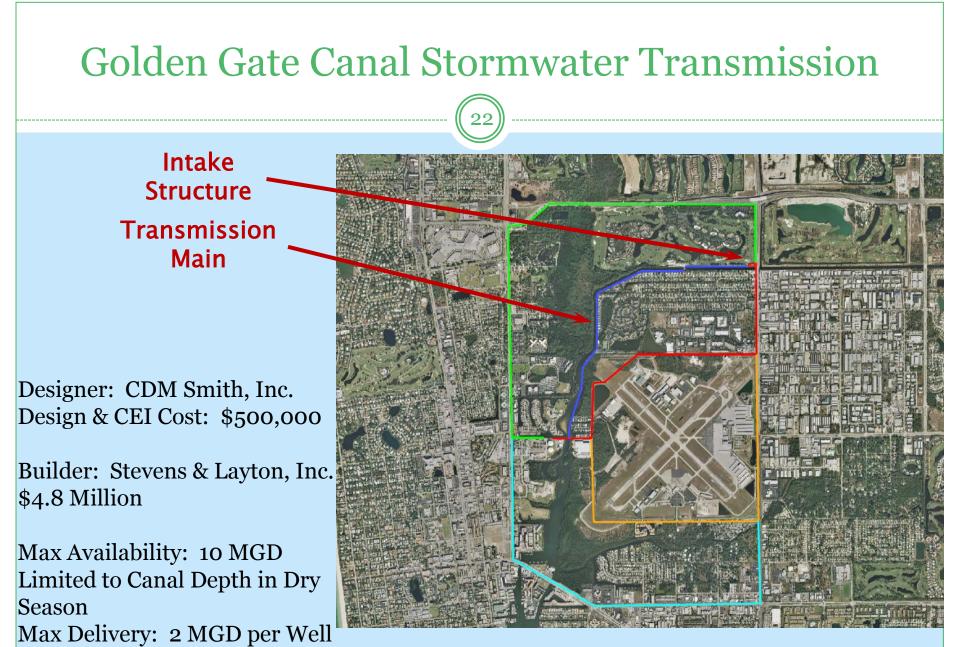


Large Rig (85'+)

Casing Requirements

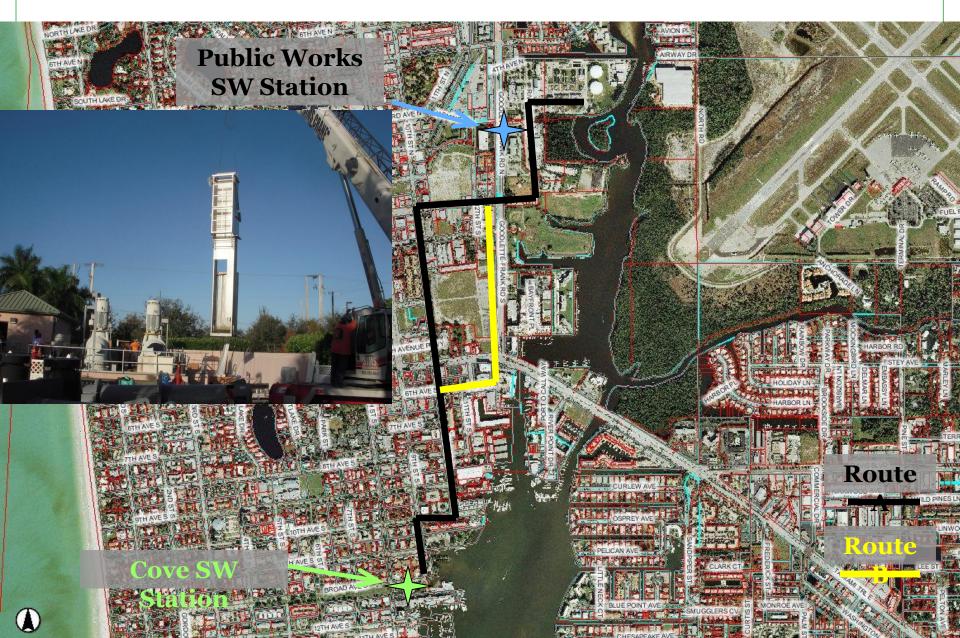

ASR Well No. 1 Completion diagram 24-inch casing to 1,080' Storage zone 1,080' to 1,350' Plug pilot hole

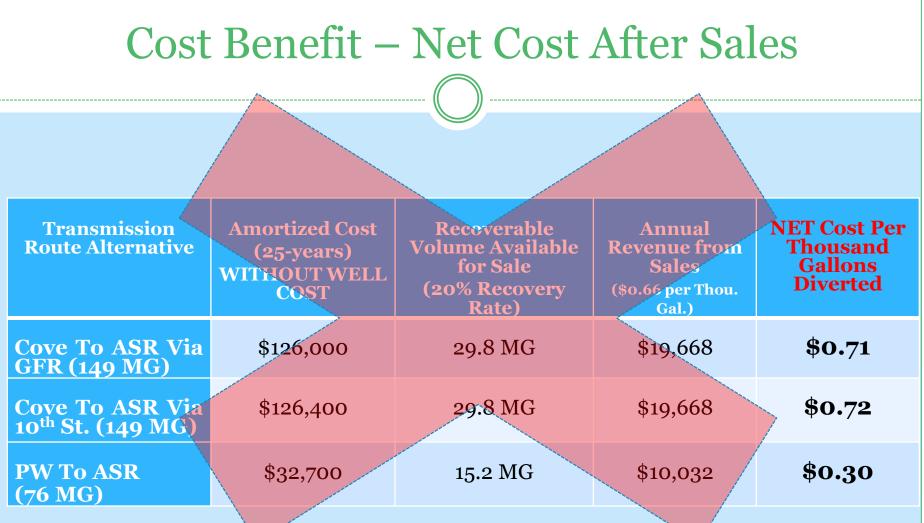
ACTIVITY		20	009			20	010			20	011			20	12			20	13			20	14	
Description	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th
	- Desig	1	1	struct	tion of	ASR	<mark>2-1</mark> —		Pro	pose	d cyc	le tes	ting -		•									
ASR Well No. 1						1									>									
	_						N		-															
Monitor Well								Con	versi	on of	explo	rator	y well	to a l	nonit	or we	ell 🛛							
	Desi of As		d con	struc	tion _		ľ,		P	ropos	sed c	ycle te	esting	<mark>;</mark>										
ASR Well No. 2																								
Surface Facilities	0		oorary		ruction	n		1										of	facilit	ies fo	r Gole	uction den wate		
ASR Well Nos. 3 and 4					sign a ASR-3							\mathbf{b}		Propo cycle		ng 🚬		Ga			hace		ASR	
						_				-		r								~	1			
Final Surface Facilities					rr	sur	sign a face f ter AS	aciliti						1		\mathbf{i}					1	$\mathbf{\hat{\mathbf{b}}}$		
Golden Gate Canal																						5		
				D	<mark>esign</mark> a	and o	const	ructic	n of	facili	ties fr	om G	i <mark>older</mark>	Gate	Cana	<mark>l to t</mark> l	i <mark>he Cit</mark>	y's W	WTP	i				


Figure 11 Implementation Schedule

HAZEN AND SAWYER Environmental Engineers & Scientists

Water Budget


- Average potable demand = 17.33 mgd
- Irrigation demand (60%) = 10.40 mgd
- Available reuse = 6.72 mgd
- Deficit = 3.68 mgd
- Critical period is March through May
- Assume 30% recovery
- Volume to meet irrigation during critical period ~ 1,000,000,000 gallons (6.24 mgd for 90 days)



HAZEN AND SAWYER

Stormwater Transmission Mains

- 2013 Reuse Rate Per 1,000 Gallons: \$0.66
- Assumes 20% Recovery Rate from ASR (100% injected, 20% extracted)

Stormwater Availability

	COVE	PUBLIC WORS
Total Flow 2012	686 MGY	369 MGY
Avg. Monthly Wet Season Flow	106 MG	53 MG
Ave. Monthly Dry Season Flow	22 MG	15 MG
Available ASR Capture for 2012 Based On Pump Run Time	149 MG	76 MG

- Does not consider adjustments to the pump controls to allow for more storage in wet well.
- Only assumes one available ASR well at 1,400 GPM max injection rate.

Cost Benefit Pollutant Reduction

lutants of Concern

	Co	ve Pump Statio	on	Public Works Pump Station				
Parameter	TN	TP	Cu	TN	TP	Cu		
Average Concentration – mg/l	1.6	0.275	0.0025	0.9725	0.084	0.01595		
Stormwater Diverted Annually	149 MG	149 MG	149 MG	76 MG	76 MG	76 MG		
Pollutant Load Reduction Per Million Gallons	13.3 lbs.	2.3 lbs.	.021 lbs.	8.1 lbs.	0.7 lbs.	.133 lbs.		
Annual Pollutant Load Reduction	1,982 lbs.	341 lbs.	3.1 lbs.	616 lbs.	53 lbs.	10.1 Ibs.		

• Other stormwater pollutants removed: suspended solids and bacteria.

Public Works SW Pump Station

Supply To ASR

- Design Transmission Main
- Construct Transmission Main
- Annual O&M Costs:

Designer: AECOM Design & CEI Cost: \$60,000

Builder: TLC Diversified, Inc. \$250,000 Million

Max Availability: Depends on Rainfall Dry Season: Under 0.5 MGD Wet Season: Limited to Canal Depth in Dry Season

Est. Capital Cost

\$ 50,000

\$250,000

\$ 5,000

CITY OF NAPLES STORMWATER QUALITY PROJECTS	POLLUTANTS OF CONCERN (TN, TP, Cu) REMOVED IN POUNDS PER YEAR	1.000	ST PER POUND DIVERTED	WITH \$1.3M ASR WELL CONSTRUCTION
PUBLIC WORKS Pump Station Transmission Main to WRF	679 lbs. (based on 75 MG treated per Year)	\$	39.76	\$ 116.35
COVE Pump Station Transmission Main to WRF	2326 lbs. (based on 149 MG treated per Year)	\$	56.32	\$ 78.68
Broad Avenue Detention System-1	88 lbs. (based on 34 MG treated per Year)	\$	121.11	
Riverside Circle Filter Marsh-1	107 lbs. (based on 52 MG treated per Year)	\$	176.01	
One Mile of Roadside Swale-1	14.5 lbs. (based on 12 MG treated per Year)	\$	430.18	
Floating Island (200 square-feet)-2	6.6 lbs. (based on plant mass increase)	\$	370.12	

NOTE #1: Pollutant removal is based on standard removal efficiencies as determined by Dr. Harvey Harper.

NOTE #2: Plant pollutant removal data based on Lee County study, "The Effectiveness of Vegetated Floating Mats in Sequesering Nutrients", 2010.

WATER QUALITY COMPARISON							
	Golden Gate Main Canal (ppm, ppb) 2007 Data	Public Works Pump Station (ppm, ppb) 2013 Data	Multiplier				
Total N	0.18	1.1	6.1 X				
Total P	0.027	0.173	6.4 X				
Copper	0.57	10	17.5 X				

Placing a Value on Naples Bay

• Naples Bay = 1,184 acres

- \$7 Million \$59 Million
- 4-acres of Seagrass
 - \$80,000
- 533 acres of Mangroves
 - \$2 Million \$10 Million
- 38 acres of Oyster Reefs
 - o \$380,000

Stormwater Reuse Through Aquifer Storage & Recovery

THANK YOU FOR THE OPPORTUNITY TO PRESENT!

GSTRAKALUSE@NAPLESGOV.COM

239-213-5003