

Watershed

Management Plan April 21, 2011

ATKINS

Project Objectives

- Develop watershed management plans that will help protect estuaries and wetland systems to
 - Restore historical water quantity and estuarine discharges
 - Improve water quality within the watersheds and estuaries
 - Address flood control and water supply issues.

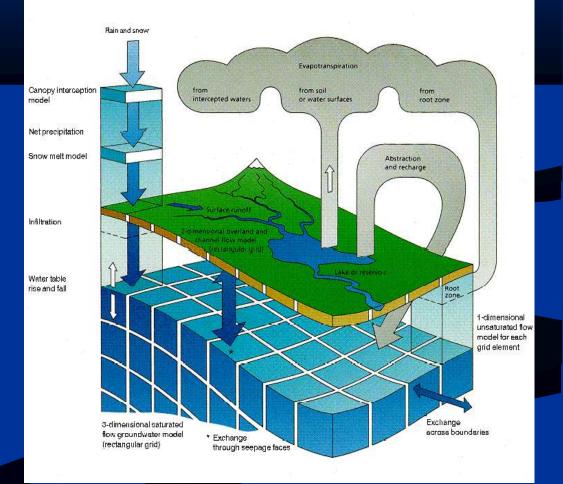
Project Specific Tasks


- Update the BCB hydrologic/hydraulic computer model
- Evaluate watershed and estuarine existing conditions
 - Water quantity
 - Water quality
 - Natural resources
- Define performance measures
- Evaluate alternatives and identify recommended improvement projects
 - Prepare Watershed Management Plans

Watersheds

Top Priority Watersheds Cocohatchee Corkscrew Golden Gate Rookery Bay Eastern Watersheds ■ Faka Union ■ Fakahatchee ■ Okaloacoochee SR 29 **Estuaries**

Summary of Existing Conditions
Recommended Projects
Structure Operations
Regulatory and Policy Recommendations
Summary and Conclusions

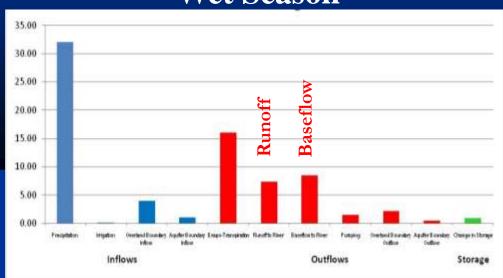


Existing Conditions Model

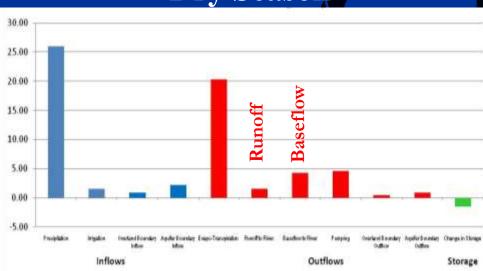
MIKE SHE

 Integrated surface water and groundwater model
 Simulation period is 2002 – 2007

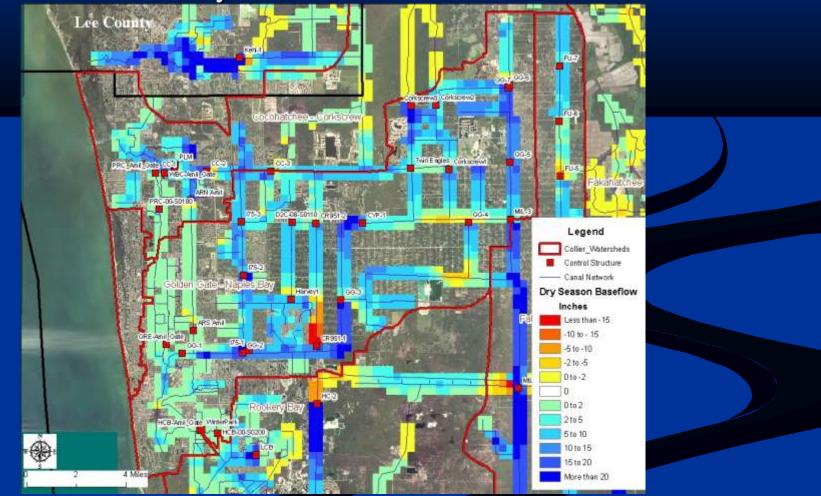
an Integrated Hydrological Modelling System


Study Area - Average Water Year Budget November 1 – June 30 (2003 – 2007) Inches

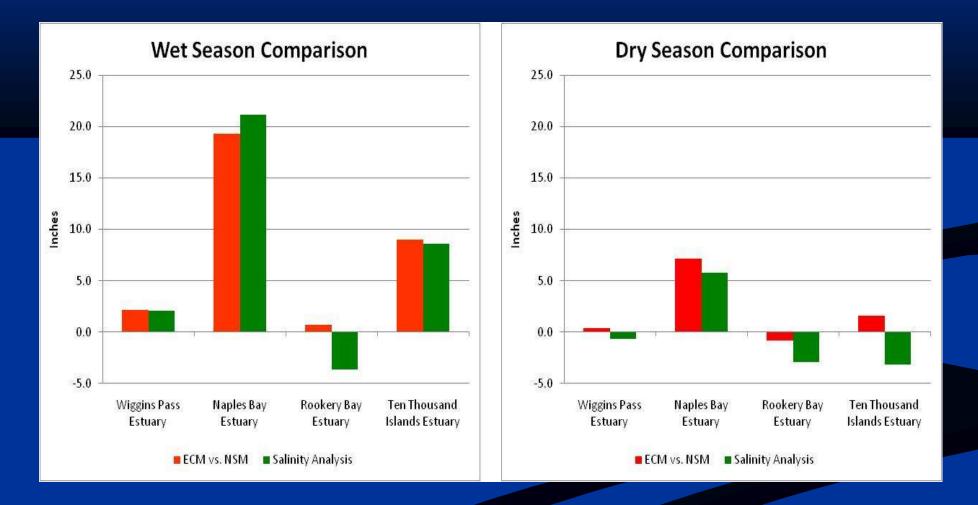
	Inflows		Outflows				Storage
Entire Model	Precipitation	Irrigation	Evapo Transpiration	Runoff	Baseflow to River	Pumping	Storage Change
Average	56.41	2.35	41.30	8.45	4.38	3.30	-0.18



Existing Conditions Golden Gate Water Budget Wet Season

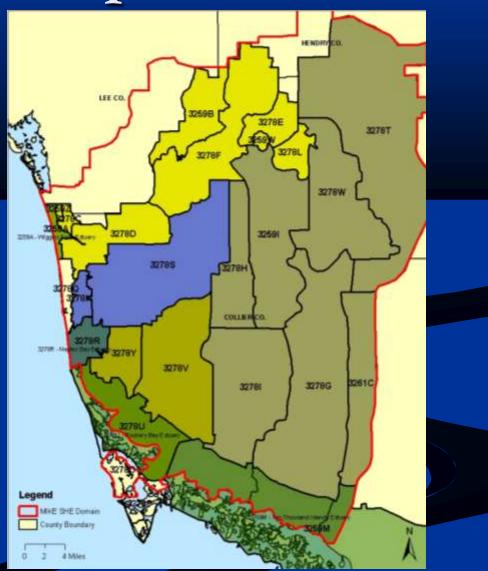


Water Control Structure Operations


Dry Season Baseflow

ATKINS PH

Calculated Flow Deficit/Surplus (inches)



Water Quality Impairments

 FDEP Run 40
 FDEP Identified Impairments in Watersheds and Estuaries

Watershed Based Impairments

WBID#	WBID Name	Impaired Parameter	Watershed
3259W	Lake Trafford	Dissolved Oxygen	Cocohatchee-Corkscrew
3259W	Lake Trafford	Mercury	Cocohatchee-Corkscrew
3259W	Lake Trafford	Nutrients	Cocohatchee-Corkscrew
3259W	Lake Trafford	Un-ionized Ammonia	Cocohatchee-Corkscrew
3278D	Cocohatchee Inland	Dissolved Oxygen	Cocohatchee-Corkscrew
3278F	Corkscrew Marsh	Dissolved Oxygen	Cocohatchee-Corkscrew
3278L	Immokalee Basin	Dissolved Oxygen	Cocohatchee-Corkscrew
3278K	Gordon River Extension	Dissolved Oxygen	Golden Gate - Naples Bay
3278S	North Golden Gate	Dissolved Oxygen	Golden Gate - Naples Bay
3278S	North Golden Gate	Iron	Golden Gate - Naples Bay
3278G	Fakahatchee Strand	Dissolved Oxygen	Fakahatchee
3278G	Fakahatchee Strand	Fecal Coliform	Fakahatchee
3261C	Barron River Canal	Iron	Okaloacochee-SR29
3278T	Okaloacoochee	Dissolved Oxygen	Okaloacochee-SR29
3278W	Silver Strand	Dissolved Oxygen	Okaloacochee-SR29

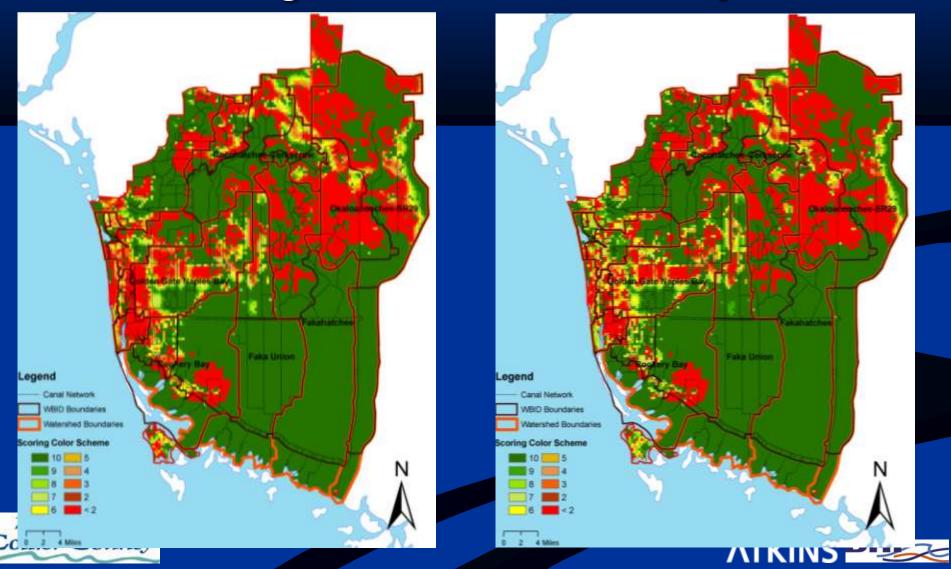
Estuary Based Impairments

WBID #	WBID Name	Impaired Parameter	Watershed	
3259A	Cocohatchee River	Dissolved Oxygen	Cocohatchee-Corkscrew	
3259A	Cocohatchee River	Fecal Coliform	Cocohatchee-Corkscrew	
3259A	Cocohatchee River	Iron	Cocohatchee-Corkscrew	
3278R	Naples Bay (Coastal Segment)	Dissolved Oxygen	Golden Gate - Naples Bay	
3278R	Naples Bay (Coastal Segment)	Fecal Coliform	Golden Gate - Naples Bay	
3278R	Naples Bay (Coastal Segment)	Iron	Golden Gate - Naples Bay	
3278R	Naples Bay (Coastal Segment)	Copper	Golden Gate - Naples Bay	
3278U	Rookery Bay (Coastal Segment)	Dissolved Oxygen	Rookery Bay	
3278U	Rookery Bay (Coastal Segment)	Nutrients (Chl-a)	Rookery Bay	
3278U	Rookery Bay (Coastal Segment)	Fecal Coliform	Rookery Bay	

Pollutant Loading

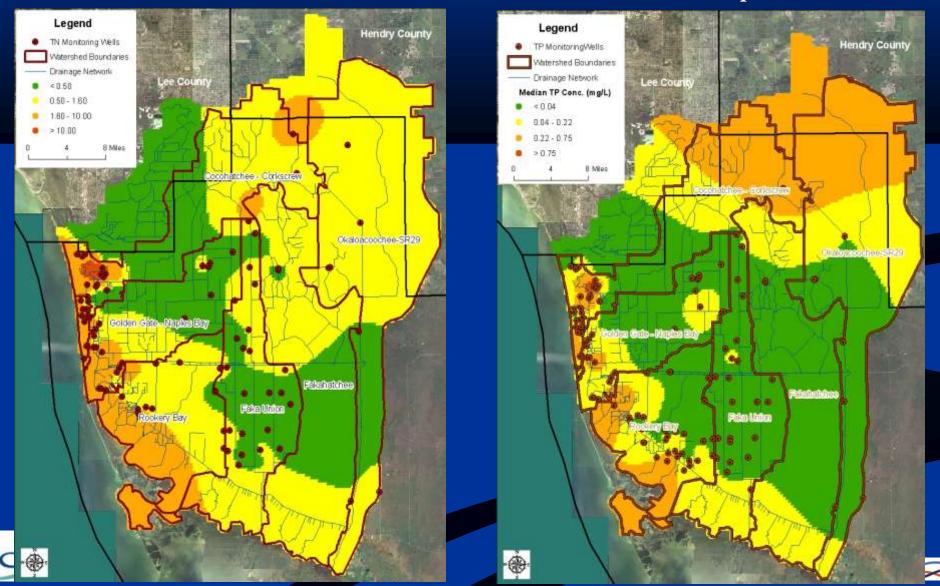
Surface Water

- Calculate runoff from each cell in the model
- Calculate total anthropogenic load based on SWFFS Event
- Mean Concentration and existing treatment technology
- Calculate surface water pollutant score
- Groundwater
 - Calculate pollutant concentration in each cell (use Kriging) interpolation)
 - Calculate total load by multiplying average concentration per WBID by the baseflow



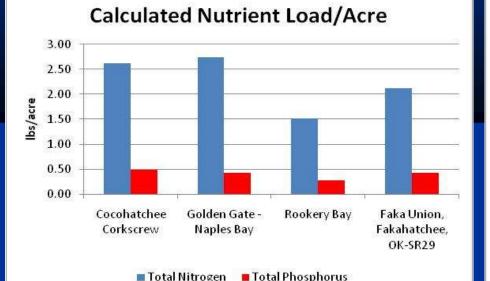
Surface Water Pollutant Loading Scores

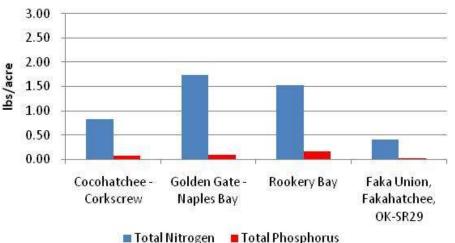
Total Nitrogen


Total Phosphorus

Groundwater Pollutant Concentrations

Total Nitrogen


Total Phosphorus


Nutrient Load Comparison

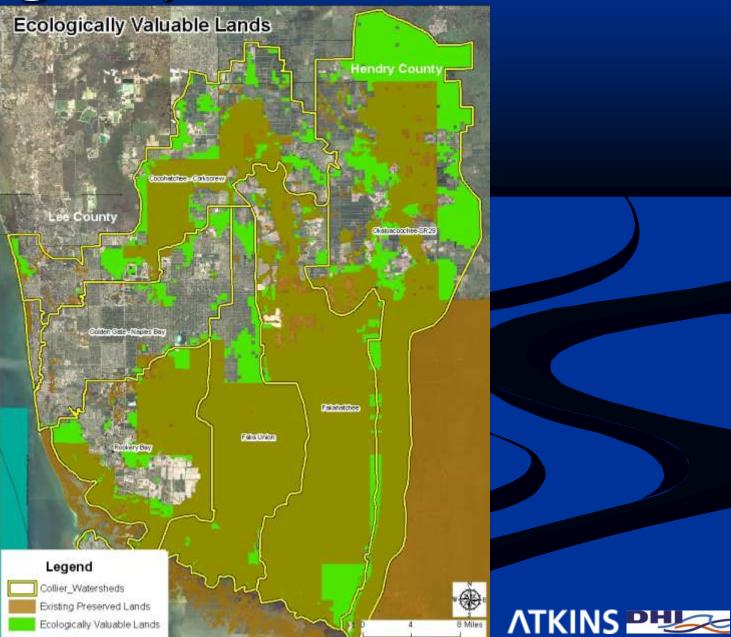
Surface Water Load

Groundwater Load

Calculated Nutrient Load/Acre



Natural Resources Functional Assessment Comparison of existing conditions to Pre-Development Vegetation Map (PDVM; Duever 2004) Uniform Mitigation Assessment Method (UMAM; FAC 62-345) as template Modified for landscape level assessment Optimal condition defined Vegetation Hydrology Landscape Suitability Index (landscape position)


Functional Assessment

Ecologically Valuable Lands

Evaluation of Aquifer Drawdown

Methodology

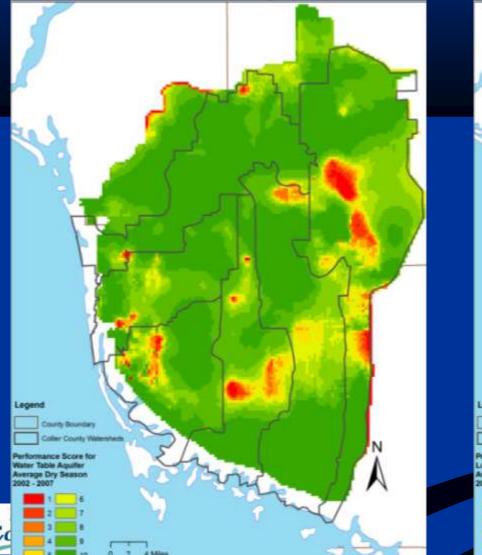
 Evaluation conducted for driest-dry season conditions (November 2006 – June 2007)

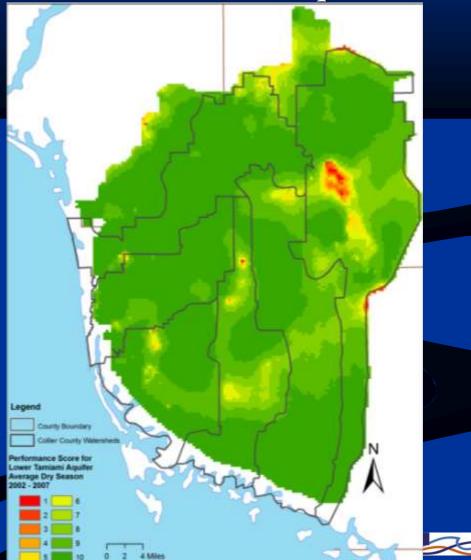
Potential effect of additional 10 percent pumping from Surficial and Lower Tamiami aquifers

Scoring of Aquifer Drawdown

Methodology

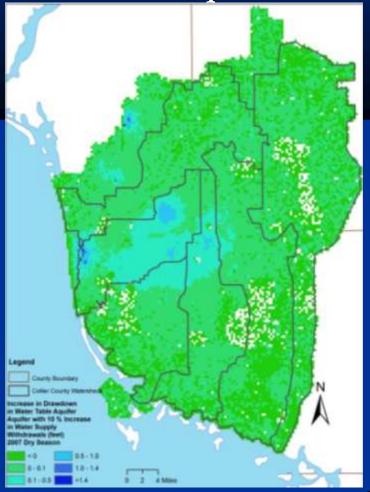
 Score assigned in each grid cell based on average dry season potentiometric surface elevation

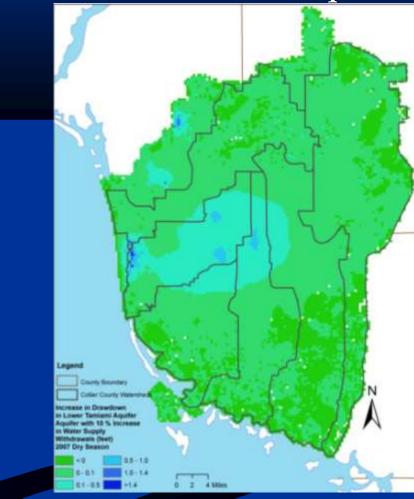




Average Dry Season Aquifer Drawdown Scores

Surficial Aquifer


Lower Tamiami Aquifer



Difference in Potentiometric Surface with 10% More Pumping

Surficial Aquifer

Lower Tamiami Aquifer

 Summary of Existing Conditions
 Increased storage in the Cocohatchee – Corkscrew may resolve timing of flow to estuary

Management of baseflow in the Golden Gate watershed is crucial to estuarine protection
The majority of pollutant loading is associated with stormwater runoff, but baseflow load is important

Increasing recharge has long-term benefits for meeting future water supply needs

County

Recommended Projects

- Alternative Analysis
- Recommended Projects
- Opportunities for Improved Structure Operations

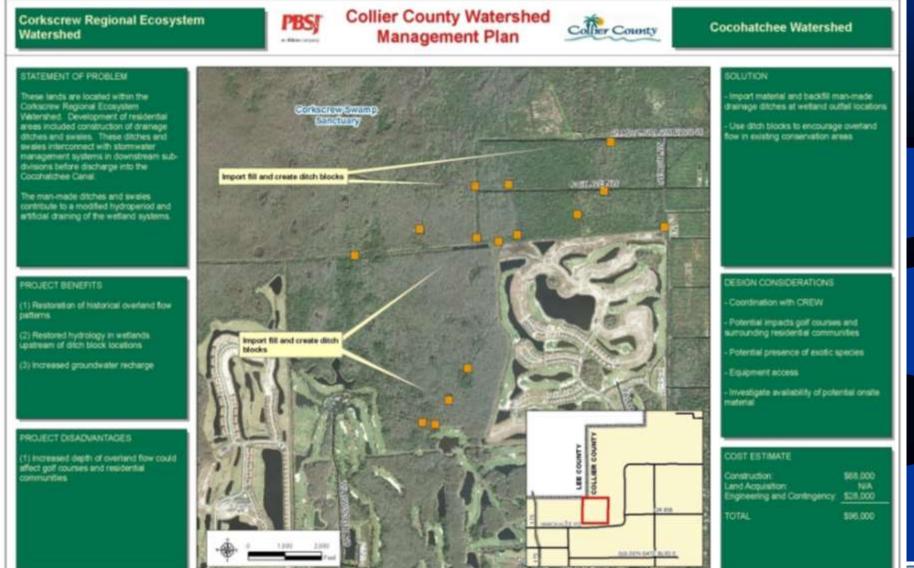
Identification of Potential Projects

Methodology

- Identify previously considered projects or projects that are scheduled for implementation
- Better define previously identified projects
- Identify new project opportunities based on:
 - Estuary freshwater surplus/deficit
 - Current property ownership
 - Existing conservation easements
 - Location within Sending/Receiving areas

Identification of Potential Projects

- Previously considered projects or projects that are scheduled for implementation
 - Picayune Strand Restoration Project
 - Southwest Florida Feasibility Study
 - Belle Meade Area Stormwater Master Plan
 - Lely Area Stormwater Improvement Project
 - Immokolee Stormwater Master Plan
 - Master Plan for Regional Irrigation Distribution System (RIDS)


Evaluation of Potential Projects

Feasibility ■ Is it constructable? ■ Is it cost-effective? ■ Can it be permitted? Evaluation of Benefits Discharge to estuaries Restoration/improvement of wetland hydrology ■ Water quality treatment Groundwater recharge

Recommended Projects Cocohatchee - Corkscrew

Collier County Watershed

Management Plan

PBS

-

North Golden Gate Estates Flowway Restoration Project

Construction of the Golden Gete dramage retwork and construction of residential tracts fractured the connectivity of wetland systems through this region. Roadside dramage swales, coupled with a tack of culverts underneath the roads now serve to trute flows directly into the casel system.

This increases the volume and speeds discharge to the aduary while negatively modifying the welland hydrology. In addition, groundwater elevations in the northern Golden Gale Estates area are lower due to water diversion and the use of the Surficial and Lower Tamiami aquifers for water supply.

PROJECT BENEFITS

(1) Restores welland hydrology, connectivity and habitat while increasing and attenuating treatwater storage

(2) Increases groundwater recharge and helps maintain groundwater elevations

(3) Provides water quelity treatment

(4) Project could be funded through mitigation credits

PROJECT DISADNANTAGES

 Area would be designated as a mitigation area and as Rural Fringe Sending Area.

(2) Devated groundwater level may affect septic leach fields or increase food risk for residential properties near the project.

(3) May require purchase of private properties within the primary flowway

(4) Dependant on designation of the area as a new TDR program

SOLUTION

Coller County

 This is the Northern Golden Gates Estates Plowway Restoration Project.
 Project would utilize disch blocks and equilization culverts to provide connectivity writhin the wefand system and re-establish historical flow regimes.

Golden Gate and Faka Union

Watersheds

Grading will likely be required to reistablish connectivity

 Elimination of roadside berms may be necessary to promote overland flow south and re-direct runoff through the historical welfand slough and back into the Golden Gate and Faka Union Canalis

DESIGN CONSIDERATIONS

Evaluate the presence of roadside berms that restrict sheet flow.

 Determine the maximum groundwater elevation that is allowed for proper function of septic systems in the immediate vicinity.

Consider the affects of increased sheetfow on downstream properties.

 Evaluate flow rates and storage capacities within the system and size culverts accordingly

COST ESTIMATE

	\$1,691,000
and Acquisitor. Engineering and Contingency.	\$0 \$677,000
TOTAL	\$7,368,000

.

Collier County Watershed

Management Plan

PBS

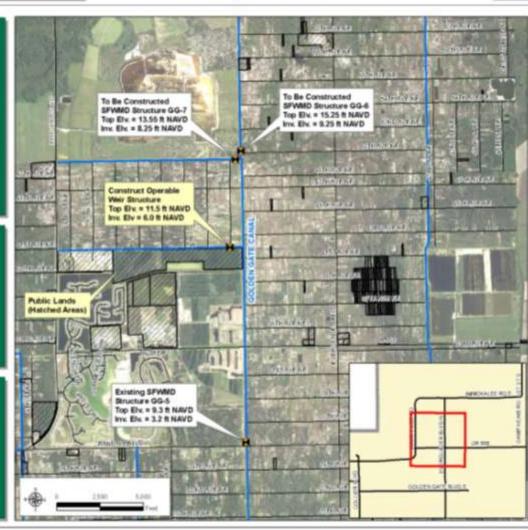
Upper Golden Gate Estates Canal Weir Construction

Construction of the Golden Gate Main Canal effectively troked the size of the Golden Gate - Naples Bay watershed and increased the volume of theshwater discharged to the estuary. This has charged the saline balance of the estuary system.

In additional, the proundwater elevations in the northern Golden Gate Estates anea have been lowered. This can be attributed to the presence of the canal system and use of the Sufficial and Lower Tamami aquifers for water supply.

PROJECT BENEFITS

(1) Provides storage of treshwater and decreases flow to the Naples Bay estuary


(2) Increases groundwater recharge and helps maintain groundwater elevations year-round

(3) The operable weir alternative provides. fexibility to manage groundwater and surface water elevations effectively.

PROJECT DISADNANTAGES

(1) Elevated groundwater level may affect septic leach fields or increase flood itsk for residential areas near the canal.

 Permits for upstream water detention facility may have to be modified.

SOLUTION

Golden Gate Watershed

Collier County

 In conjuction with SFWMD projects to replace GG-6 and GG-7 with operable structures, construct an additional operable structure on the finger canal south of the GG-7 canal. The structure will allow the canal to be used as water storage feature. Additional storage capacity could be created by increasing the cross-section width into publicity owned lands south of the canal.

 The County already owns the property on the south side of the cenal

DESIGN CONSIDERATIONS

Design and operational protocol would be coordinated with SFWMD projects to replace the GG-8 and GG-7 structures.

Construction and operational access may require construction easement on the north side of the canal.

 Evaluate added benefit of additional storage by an increase of cross-section on portions of the adjacent publically-owned lands

 A fixed sill weir with manual board operation would be a more inexpensive option

COST ESTIMATE

Construction: \$394.000 and Acquisition: \$0 Engineering and Contingency: \$158.000 IOTAL: \$552.000

Collier County Watershed

Collier County

PBS

Orange Tree Canal Control Structure Installation

1.000

Golden Gate Watershed

Recommended Projects Rookery Bay

North Belle Meade/Southern Horsepen Strand Rehydration

Collier County Watershed Management Plan

Rookery Bay Watershed

STATEMENT OF PROBLEM

Construction of the Golden Gate Main Canal interrupted the historical sheet flow pattern to the south and Rookery Bay. The water is row divetted west toward the Naples Bay entuary. Overall, this reduction of stimmwater flow has resulted in decreased satirity levels in Naples Bay and increased satirity levels in Naples Bay additionally, the reduction of stomwater runoff to the south has decreased withand hydroperiods in areas where inheettibw used to occur.

PROJECT BENEFITS

 Diverts water from the Golden Gate Main Canal and decreases flow to Naples Bay

(2) Increases hydroperiods of welland areas in the North Belle Meade area

(3) Increases groundwater recharge

(4) Provides water quality treatment to diverted water

(5) Increases flows to Rockery Bay

(6) implementation could be tied to mining permit

PROJECT DISADVANTAGES

 Primary concept is dependiant on acquisition of privately-owned property for the diversion canal construction

 Culverts underneith 1-76 may have multicient capacity to handle additional flow.

SOLUTION

Coller County

Purchase potions of properties on the south side of the Golden Gate Canal and construct a 1200 LP 30 wide finger canal to the south connected to the Golden Gate canal

 Construct 6000° UF, 66° wide spreader swale with 6 - 75° long spreader weirs to discharge water to the weishold area south of the spreader

 Construct a 100 cfs pump station to draw water from the southern end of the constructed finger canal into the spreader swate system to feed the spreader.

DESIGN CONSIDERATION

 An atternative design would be to build the diversion canal in conjunction with and adjacent to the Wilson Bivd extension. Watercould be pumped from the diversion canal and over to the spreader swale. Although this would require the construction of over 1000 LF of force main.

 Plows north of the constructed spreader swale may need to be graded slightly east to the constructed finger canal.

 Project discharge area lies with a Pural Pringe Sending area, the development rights for this area would need to be transferred prior to construction

OST ESTIMATE

onstruction \$4,788,000 and Acquistion \$222,000 ngineering and Contingency \$1,916,000 DTAL \$7,026,000

Recommended Projects Rookery Bay

Collier County Watershed

PBS

South I-75 Canal Spreader Swale and Wetland Restoration

TATEMENT OF PROBLEM.

pristruction of the Golden Gate Main Canal interrupted the historical sheet flow pattern to the soldh loward Rookery Bay. The water is now diverted west loward the Naples Bay estuary. Due to the redetection of flow and in impedence to overland flow caused by 5 , the wetland area south of I-75 within the Icayure Strand State Forest has a decreased hydroperiod and a change in wetland habitat

I) increases hydroperiod of wetland areas drin the State Forest.

2) Increases graundwater recharge by envolating weband areas

Provides some water quality treatment to

infrastructure/waterways and existing public

1) The project would require negotiation with the managers of the Picayune Strand State

2 Privately owned out-parcels exist in the Provide Strand State Porest. Properties may have to be purchased, conservation essement obtained or diversion berms

Coller County

water truth within the interconnected 1-75 Canal Network to feeder channel that itiaks south to the spreader swain site.

Rookery Bay Watershed

Construct a 9000 LF Spreader swate with veirs that discharge at topographic laws along the spreader during the wet season when flows are available to extend the hydroperiod and depth of water in the wetland area within the Picayune Strand State Forest

Consider the affect of increased sheet flow

init volume of water available for diversion to


Culverts and crossings under Sable Palm Id may not have capacity to manage

0.050		

bratruction	\$2,326,000
and Acquisition	\$0
Engineering and Contingency.	\$932,000
OTAL	\$3,131,000

Recommended Projects Rookery Bay

Henderson Creek Off-Line Storage Reservior

The Henderson Creek Canal discharges to the south, directly to Rookery Bay. tookery Eley experiences a freshwater nflow surplus during the wet season (June September) and treshwater deficit during the dry season. These flow deficits/surpluses have a negative impact on the salinty levels within the receiving water estuary

ROJECT BENEFITS

(1) Decreases freshwater flows to Rookery Bay during the wet season, consequently benefiting satisfy levels in the estuary


23 Would increase groundwater recharge

3) Reduces pollutant loadings to the **HALLAN**

PROJECT DISADWANTAGES

1) Property is currently private-owned and is actively mined.

(2) A portion of the stored water may seep back into the canal as groundwater

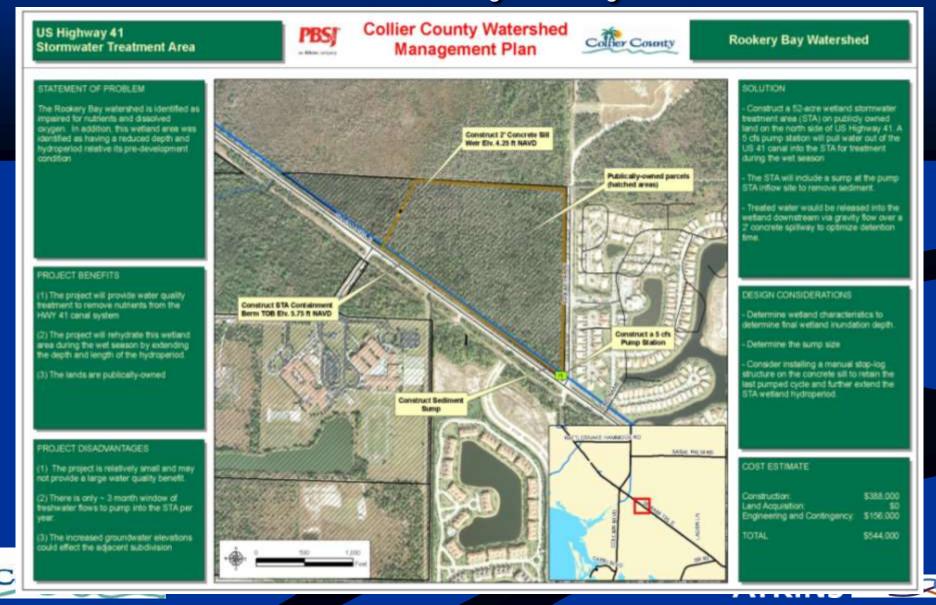
Obtain the rights to the mining property. after the mine is dosed. Utilize storage volume in the abandoned

sine by constructing a 10 cfs pump station to divert excess wet season flows (August-September) into the reservoir when in-stream canal flows exceed 50 cfs

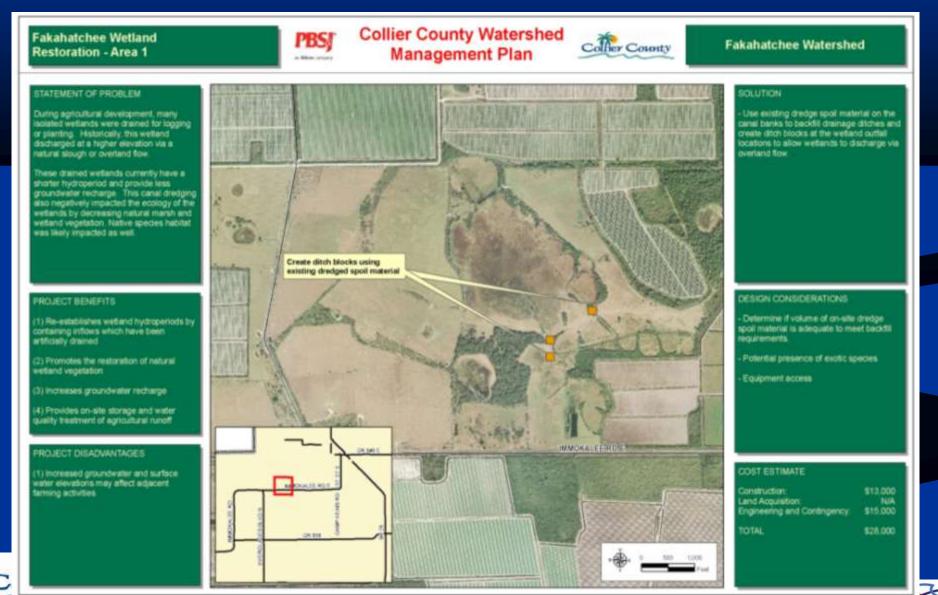
DESIGN CONSIDERATIONS

Pumping rate and schedule should be coordinated with Henderson Creek Diversion Pump Station project

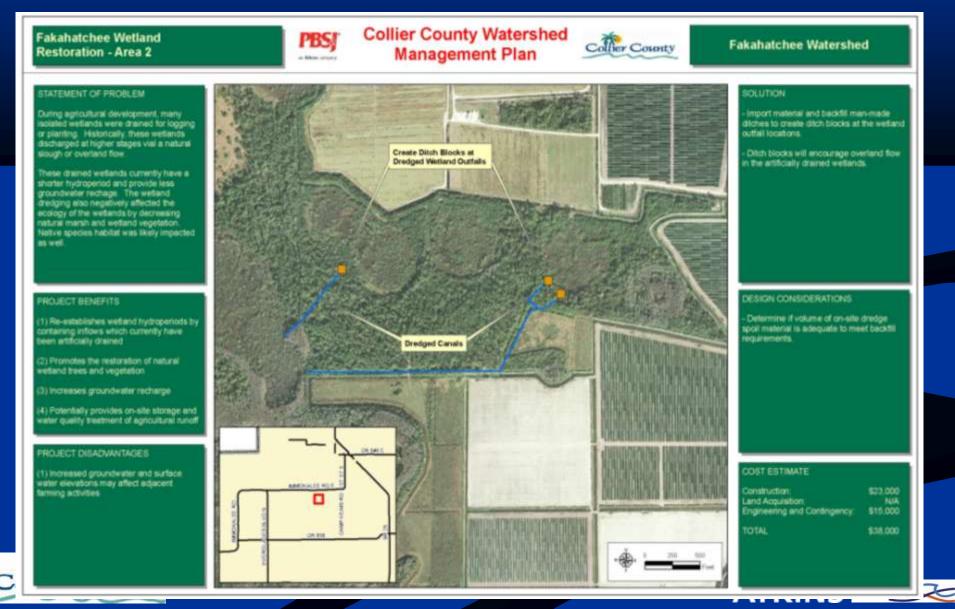
Determine the leakage rate through the bed of the mining pit to the canal


Re-evaluate storage pump capacity if additional area is mined

Determine the MFL to Rockery Bay


COST ESTIMATE

onstruction.	\$671.000
and Acquisition: Ingineering and Contingency.	\$299,000


Recommended Projects Rookery Bay

Recommended Projects Fakahatchee Watershed

Recommended Projects Fakahatchee Watershed

Collier County Watershed

Management Plan

PBS

a literature

Upper Okaloacoochee Slough Wetland Restoration

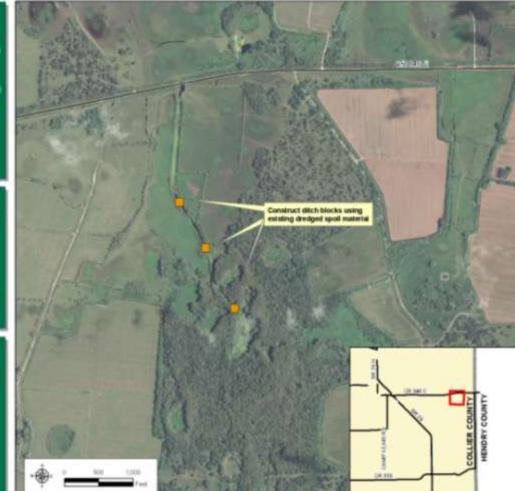
STATEMENT OF PROBLEM

This portion of the Okaloscochee Sough was dredged to drain the upstream welland oreas for farming activities. This resulted in shorter welland hydropenods and leas groundwater recharge. The dredged canal also negatively impacted the ecology of the sumounding wellands by decreasing natural mansh and welland vegetation. Native species habitat was likely impacted as will.

PROJECT BENEFITS

 Re-establishes wetland hydroperiods by reducing drainage

(2) Promotes the restanation of natural wetland trees and vegetation


(3) increases groundwater recharge

(4) This area lies within the Okaloacoochee Slough Flowway Stewardship Area (FSA)

PROJECT DISADVANTAGES

 Reduced drainage capacity could increase food risk of SR 845 and upstream lands.

(2) increase depth of surface water could, affect agricultural areas of surrounding properties.

Okaloacoochee Watershed

SOLUTION

Collier County

 Use existing dredge sool material on the carality banks to backfill diches and create dich blocks at the welfiant durital illocatorix.
 The dich blocks created within the slough will re-hydrate wetlands and provide natural sedimentation in the diredged canal to raise the slough profile and promote the natural restoration of the waterway.

DESIGN CONSIDERATIONS

 Determine if volume of on-site dredge spoil material is adequate to meet backfill requirements.

 Verify no flooding impacts are generaled at SR 846 and the lands to the north of SR 846

COST ESTIMATE

Construction:	547	00
and Acquisition;		Ņ
ingineering and Contingency;	\$19	00

Middle Okaloacoochee Slough Wetland Restoration PBS

Collier County Watershed Management Plan

Collier County

Okaloacoochee Watershed

STATEMENT OF PROBLEM

This portion of the Okaloscochee Sough was dredged to drain the upstream watland ores for farming activities. This resulted in shorter wetland hydroperiods and less groundwater recharge. The dredged canal also nepatively impacted the ecology of the optimem wetlands by docreasing natural marsh and wetland vegetation. Native species habitat was likely impacted as well.

PROJECT BENEFITS

 Re-establishes wetland hydroperiods by containing inflows which currently have been artificially drained

(2) Promotes the restoration of natural webland trees and vegetation

(3) Increases groundwater recharge

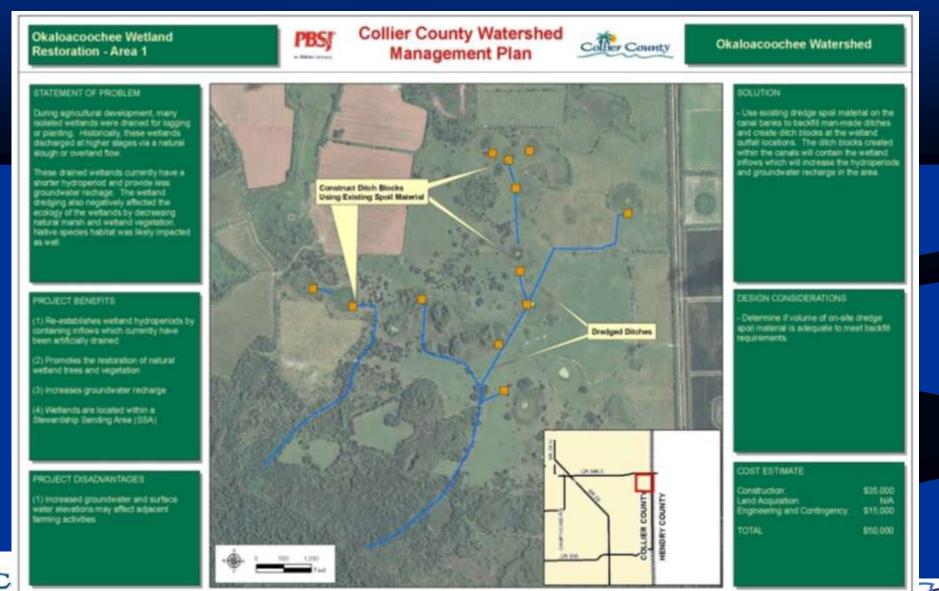
(4) This area lies within the Okaloacoochee Slough Flowway Stewardship Area (FSA)

PROJECT DISADVANTAGES

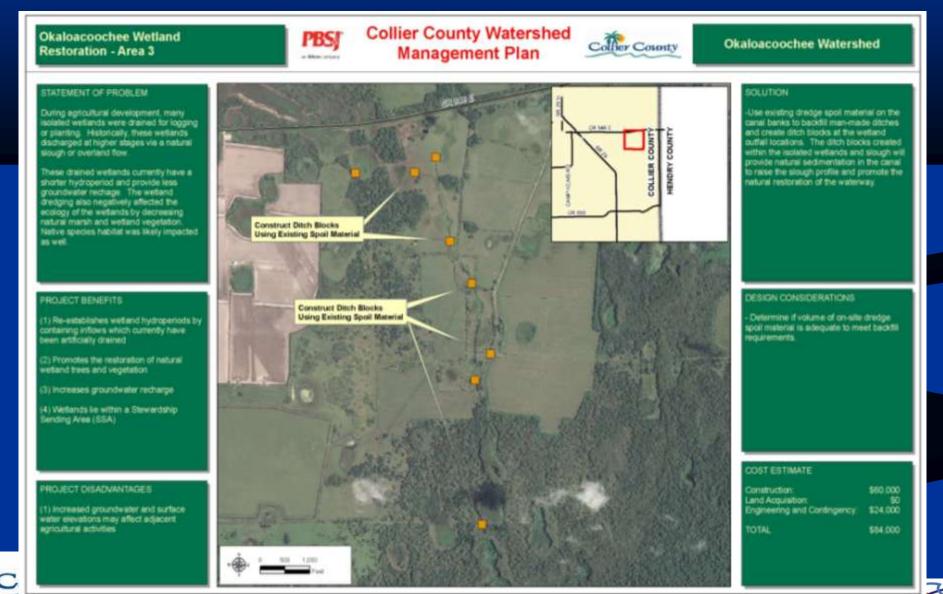
 increased depth of water could negatively impact surrounding farming activities.

SOLUTION


 Use existing dredge spoil material on the canal banks to backfill man-made disches and create disch blocks at the welland outfail locations. The disch blocks created within the slough will provide natural sedementation in the canal to raise the slough profile and promote the natural restoration of the wellarway.


DESIGN CONSIDERATIONS


 Determine if volume of on-site dredge spoil material is adequate to meet backfill requirements.


Opt ED IMALE	
construction:	\$96.0
and Acquisition;	
ingineering and Contingency.	\$30.0

\$135,000

Project Summary

Cocohatchee – Corkscrew Watershed

- Ditch blocks for restoration of hydrology
- Golden Gate Watershed
 - Diversion from GG to Rookery Bay
 - NGGE wetland mitigation area
 - Two (2) projects to reduce baseflow in finger canals
 - Wolfe Rd. stormwater treatment area

Project Summary

Rookery Bay Watershed

- North Bell Meade Spreader Swale (from Golden Gate)
- South Bell Meade Spreader Swale
- Off-line reservoir
- Stormwater treatment area
- Faka Union, Fakahatchee and Okaloacoochee Watersheds
 - Eight (8) projects with ditch blocks for hydrologic restoration in isolated wetlands and sloughs

Project Summary Combined Performance Measure Lift

Performance Measure	Cocohatchee - Corkscrew		Golden Gate - Naples Bay		Rookery Bay		Faka Union, Fakahatchee, Okaloacoochee	
Performance weasure	Existing	Predicted	Existing	Predicted	Existing	Predicted	Existing	Predicted
	Conditions	Score	Conditions	Score	Conditions	Score	Conditions	Score
Discharge to Estuaries	5.43	5.43	1.56	2.96	4.35	6.54	5.64	5.69
Wetland Hydrology	2.58	2.61	6.21	6.32	3.76	3.98	5.81	5.87
Water Quality								
Total Nitrogen	4.23	4.23	4.51	5.25	7.41	7.75	6.16	6.75
Total Phosphorus	5.13	5.13	3.75	4.02	6.73	6.80	5.76	7.23

Project Ranking Procedure

- Calculate improvement based on Performance Measures
 Define Watershed Weighting Factors by Benefit Type
 - Watershed drainage area
 - Size of the receiving estuary
 - Land use distribution
- Normalize Benefit Type Scores
- Additional Weighting Based on Relative Importance
 - (Normalized Score of Water Discharges to Estuaries) * 2
 - (Pollutant Load and Watershed Hydrology) * 1

Watershed Weighting Factors

Weighting factors calculated per watershed by benefit-type
Factors are calculated relative to the drainage area
Water Quantity: estuary area/drainage area
Water Quality: urban or agricultural area/drainage area
Natural Resources/Hydrology: existing inland wetland area/drainage area

Watershed Weighting Factors

	Weighting Factor						
Watershed	Discharge to	Wetland	Mater Quality				
	Estuary	Hydrology/Habitat	Water Quality				
Golden Gate/Naples Bay	9.75	5.86	6.06				
Rookery Bay	6.55	4.89	2.45				
FU-FA-OK/Ten Thousand Islands	7.27	1.17	1.81				
Cocohatchee-Corkscrew/Wiggins Pass	9.75	3.87	4.01				

Discharge to Estuary Weighting Factor = 10 - (10 x (Receiving Estuary Area / Watershed Area))

Wetland Hydrology/Habitat Weighting Factor = 10 - (10 x (Non-Tidal Wetland Area / Watershed Area))

Water Quality Weighting Factor = 10 x (Urban + Agricultural Area / Watershed Area)

Example Calculations

 North Belle Meade Spreader Swale
 Discharge to Estuary Benefit: Golden Gate: Performance Measure Lift of 0.89 Rookery Bay: Performance Measure Lift of 1.25
 Wetland Hydrology/Habitat Benefit: Rookery Bay: Performance Measure Lift of

Normalized Project Ranking

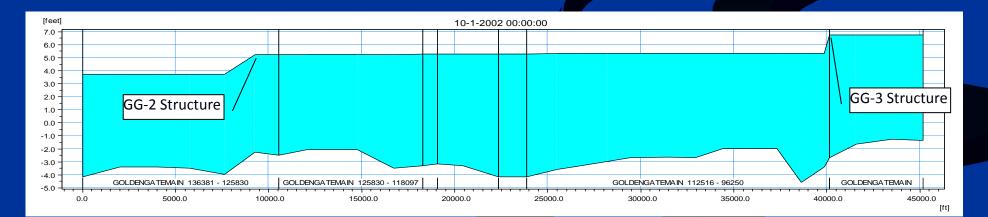
RECOMMENDED PROJECT		TO ESTUARY EFIT	WATER QUALITY BENEFIT		WETLAND HYDROLOGY/HABITAT BENEFIT		Total Normalized
	Weighted Score	Normalized Score	Weighted Score	Normalized Score	Weighted Score	Normalized Score	Project Score
North Belle Meade/Southern Horsepen Strand Rehydration ⁽¹⁾	16.865	8.5976	1.0658	2.579	0.1751	2.537	22.310
North Golden Gate Estates Flowway Restoration Project ⁽¹⁾	0.0927	0.0472	4.1330	10.000	0.690264	10.000	20.094
Henderson Creek Diversion Pump Station (100 cfs) ⁽¹⁾	19.616	10.0000	0.0000	0.000	0.0000	0.000	20.000
South I-75 Canal Spreader Swale and Wetland Rehydration	0.0000	0.0000	0.4304	1.041	0.5062	7.334	8.375
Corkscrew Regional Ecosystem Watershed	0.0000	0.0000	0.0000	0.000	0.1214	1.758	1.758
Middle Okaloacoochee Slough Wetland Restoration	0.0000	0.0000	0.5033	1.218	0.0180	0.261	1.479
Henderson Creek Off-Line Storage Reservior	0.2351	0.1199	0.0581	0.141	0.0000	0.000	0.380
Lower Okaloacoochee Slough Wetland Restoration	0.0000	0.0000	0.1065	0.258	0.0028	0.040	0.298
Fakahatchee Wetland Restoration - Area 1	0.0000	0.0000	0.0751	0.182	0.0001	0.002	0.183
US HWY 41 Stormwater Treatment Area & Wetland Hydration	0.0000	0.0000	0.0143	0.035	0.0076	0.110	0.144
Fakahatchee Wetland Restoration - Area 2	0.0000	0.0000	0.0560	0.135	0.0001	0.001	0.137
Wolfe Road Wetland Treatment System	0.0000	0.0000	0.0462	0.112	0.0000	0.000	0.112
Upper Okaloacoochee Slough Wetland Restoration	0.0000	0.0000	0.0042	0.010	0.0005	0.007	0.017
Okaloacoochee Wetland Restoration - Area 2	0.0000	0.0000	0.0000	0.000	0.0003	0.004	0.004
Okaloacoochee Wetland Restoration - Area 3	0.0000	0.0000	0.0000	0.000	0.0003	0.004	0.004
Okaloacoochee Wetland Restoration - Area 1	0.0000	0.0000	0.0000	0.000	0.0002	0.003	0.003
Upper Golden Gate Estates Canal Weir Constuction	0.0006	0.0003	0.0000	0.000	0.0000	0.000	0.001
Orange Tree Canal Control Structure Installation	0.0005	0.0003	0.0000	0.000	0.0000	0.000	0.001

(1) Weighted score considers benefit to both watersheds

Initial Project Ranking

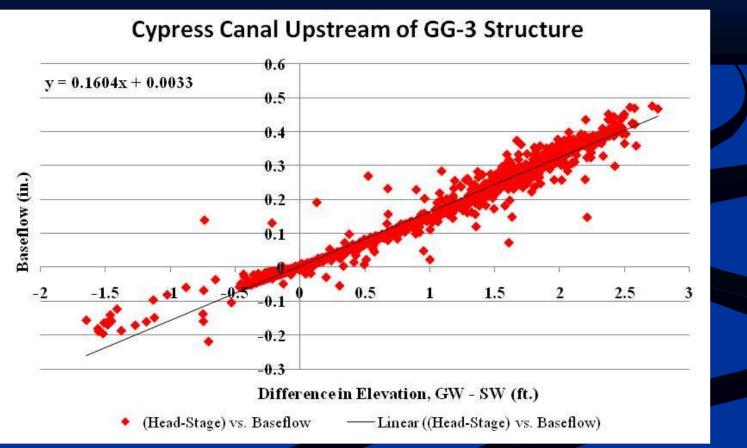
Conclusions

- Projects that divert water between watersheds will provide benefits that protect the estuaries
- Relatively inexpensive wetland restoration activities can provide significant hydrologic restoration benefits
- Non-structural and policy issues will have a significant role in managing water supply and quality in the future



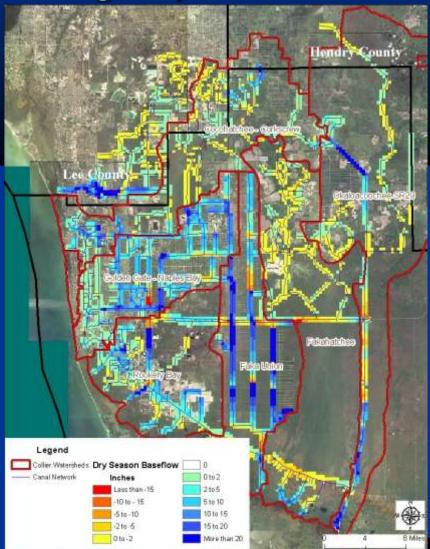
Structure Operations

Two Primary Issues in Golden Gate Watershed

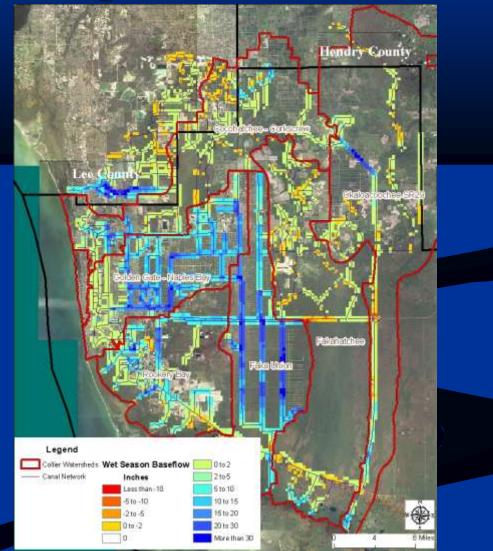

- Reduce baseflow contributions
- Direct water to other watersheds
- Currently wet season structure control elevations are below dry season control elevations

Water Control Structure Operations

 Difference between groundwater elevation and surface water elevation determines baseflow

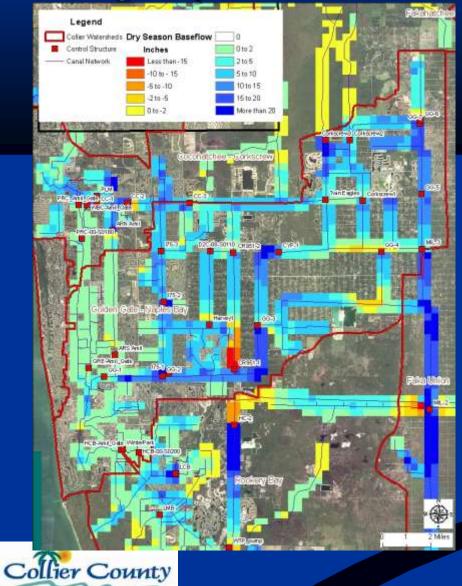


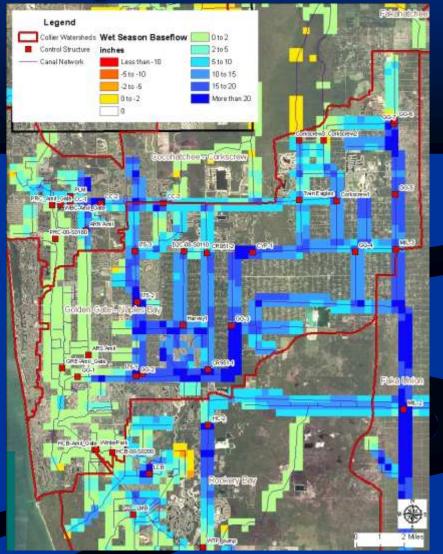
ATKINS 🏴


Water Control Structure Operations

Average Dry Season Baseflow

lier County


Average Wet Season Baseflow



Water Control Structure Operations Golden Gate Watershed

Average Dry Season Baseflow

Average Wet Season Baseflow

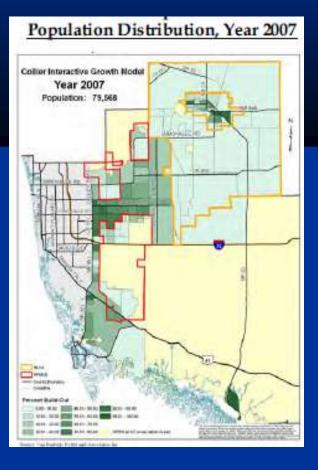
Structure Operations in the Golden Gate Watershed

- Work with SFWMD to optimize structure operations so that canal stage more closely matches groundwater elevation
- More important in dry season than wet; but wet season can be adjusted to further reduce baseflow

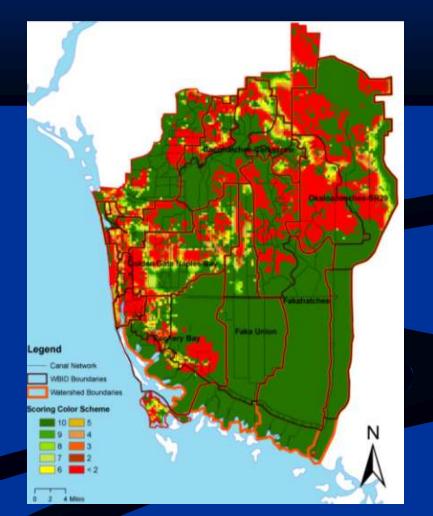
 Coordinate with SFWMD to direct excess water to Faka Union watershed during rainy season (Miller 3 and C-1 Connector Canal)



Regulatory Review and Recommendations


Current Stormwater Management Approach

County Growth Projections



Water Quality and Pollution Load Issues

- Several impaired water bodies
- Numerous areas with no runoff pollution control
 GMP Conservation and Coastal Element requires no increase in pollution load from pre-development

Total Nitrogen Load

Current Canal Capacity

- Model results show
 limited conveyance
 capacity in numerous
 canal segments
- GMP Conservation and Coastal Element
 requires no increase in pollution load from predevelopment

Objective

- Help implement a Sustainable Stormwater
 Management Program
- The programs should aim to:
 - Promote more effective site planning to minimize anthropogenic impacts,
 - Promote preservation of the natural system
 - Help reduce development costs
 - Help reduce cost of future drainage system improvements

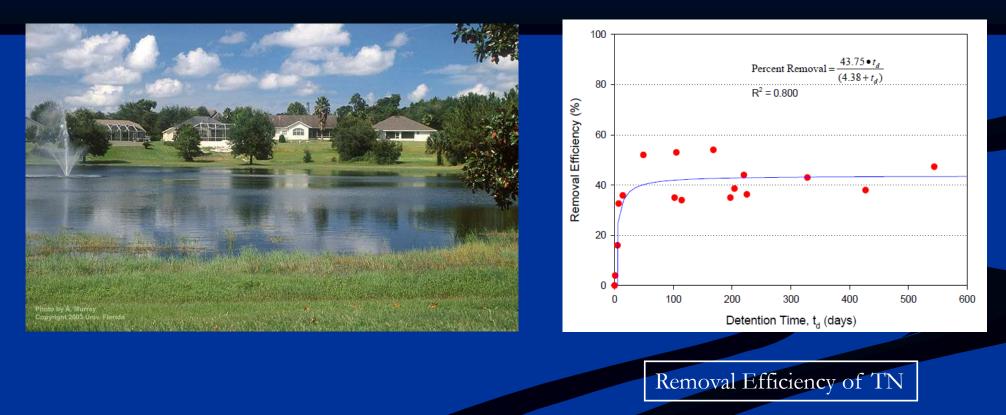
Water Quality Regulations Promote Low Impact Development (LID)

- LID promotes management of stormwater by:
 Encouraging management of stormwater at the site
 Minimize the extent of directly connected impervious areas.
 - Minimize site disturbance
 - Maintain or restore a site's natural hydrology
 - Maximize the site's assimilative capacity

Low Impact Development (LID)

Water Quality Regulatory Issues

Main Issue: How to provide water quality credits for development
Not feasible under current State regulations.


Feasible under proposed new stormwater rules.

Water Quality Treatment Requirement Growth Management Plan

All new development and redevelopment projects shall meet 150% of the water quality volumetric requirements of Section 5.2.1a of the Basis of Review for ERP applications (Ordinance 2008-10, 3.07.02 Interim Watershed Regulations)

ΛΤΚΙΝS

Recommendation

 Modify Land Development Code and Ordinance 2008-10 to require treatment by LID of 50% of runoff volume (i.e. provide retention of additional 0.5" of runoff over the drainage area)
 Provide incentives for further treatment

Directly Connected Impervious Area (DCIA) Current Conditions

Current Code Design Standards:

- Maximum impervious area in RSF-3 – RSF-6 areas is 43%
- Maximum DCIA in RSF-3 to RSF-6 areas ranges from 25% to 29%
- Road design using valley gutters

Directly Connected Impervious Area (DCIA) Incentives

Recommendation

- Allow cluster development design standards if DCIA is reduced to 15% (LDC 4.02.04)
- Allow use of drainage swales on local streets

Construction of large projects alone will not solve the problems of excess water to the estuaries

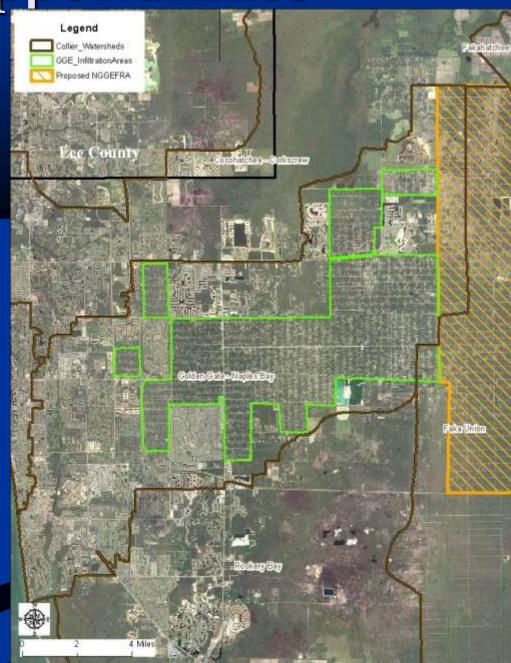
Construction of large projects alone will not significantly reduce pollutant load

LID Retrofit of Public Facilities

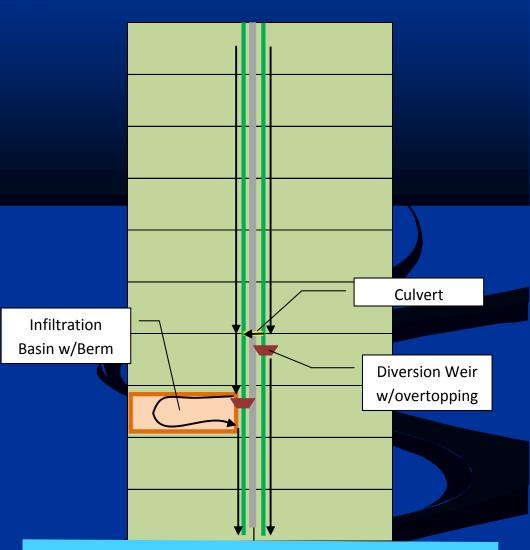
Identify locations where retrofit is possible, i.e.
 parking lots in government buildings and schools

Golden Gate High School Potential Retrofits

- Utilize islands as infiltration basins
- Install pervious pavement in low traffic areas
- Install rain gardens to capture roof runoff

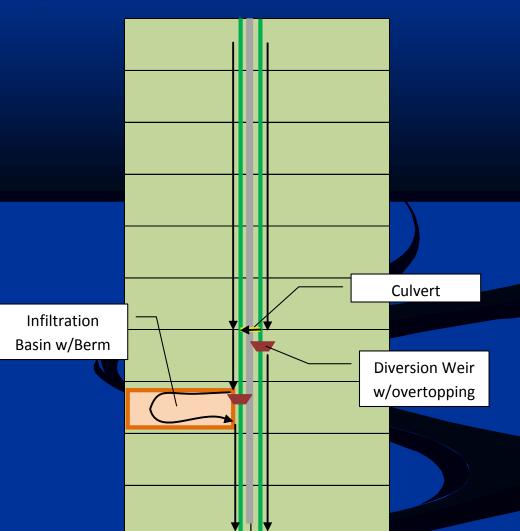

Golden Gate Estates Stormwater Management

 Road side swales and canals comprise current


stormwater management

- More than 400 residential streets in GGE that dead end at a canal
- Divert roadside swales to infiltration basins
- Develop a program to purchase 5-acre lots on as many streets as possible

- Golden Gate Estates Retrofits
 - Develop 4-acre infiltration basins
 - Typical Drainage Area is approximately 70 acres
 - Treats approximately 60% of total runoff

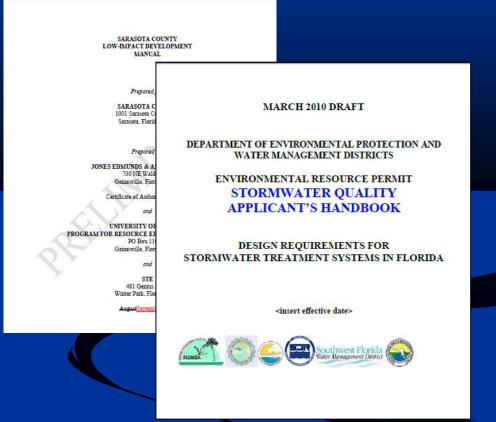


ATKINS

Benefits

- Moves surface water runoff pollutant load score from 1 to 7
- Could be used as a small neighborhood park/ educational facility
- Will require periodic maintenance
- Avoid Impacts to septic tank drain fields

LID Redevelopment and Retrofits Private Property


Ordinance 2008-80 creates the Stormwater Capital Improvement Fund – 0.15 mills of ad valorem tax revenues Provide incentives by changing the focus of the County's Stormwater Utility by creating a fee based on discharged volume of runoff Promote LID redesign through MSTUs

LID Design Standards

Adopt standards in the Draft Proposed Stormwater Rule.
Adopt by reference Sarasota County LID Manual

http://dep.state.fl.us/water/wetlands/erp/rules/stormwater/index.htm

http://www.scgov.net/EnvironmentalServices/Water/SurfaceWater/LowImpactDevelopment.asp

GMP Drainage Sub-Element Policy 1.2:

"County drainage system capital facility planning shall be designed to implement procedures and projects in a manner to ensure adequate stormwater management facility capacity available at the time a development permit is issued"

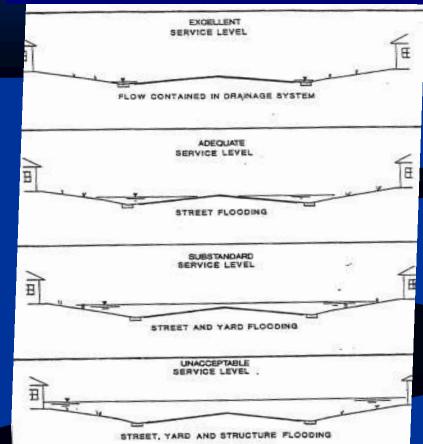
- Issue: Current regulations for large storms focus on control of peak discharge for the 25-year/72-hour design event.
- Recommendation 1:
 - Require volume control for the 25year/24-hour design event (allow control of peak, volume and timing of stormwater discharges)

Percent of Site Needed to Control Additional Volume

DCIA for Developed Area*	% of Overall Site
50	14.07
40	12.1
30	9.87
25	8.89
20	7.9
15	6.66

Issue: Peak control at a site does not guarantee no downstream impacts

Recommendation 2:


 No increases in 100-year/72 hour flood elevations upstream or downstream

 Issue: Current flood protection levels of service (FPLOS) define conditions from Levels A–D
 Most County roads meet only Level D

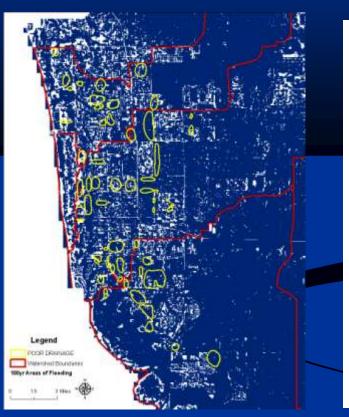
Current FPLOS

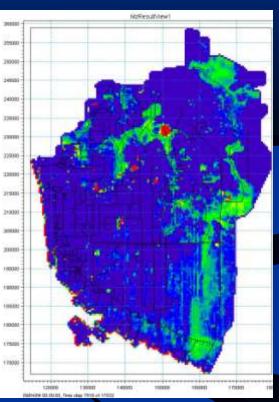


Proposed FPLOS

	Storm Return Period (years)		
Roadways	10	25	100
A. Evacuation Routes	None	None	None
B. Arterials	None	None	6 inches
C. Collectors	None	6 inches	9 inches
D. Neighborhood	6 inches	9 inches	12 inches

Open Space


Flooding of open space is acceptable if it does not compromise public health and safety



100-yr/72-hr Inundation MapsFEMA MapMIKE SHE MapInitial Conditions

September 4, 2004

Existing Level of Service

Evacuation Routes

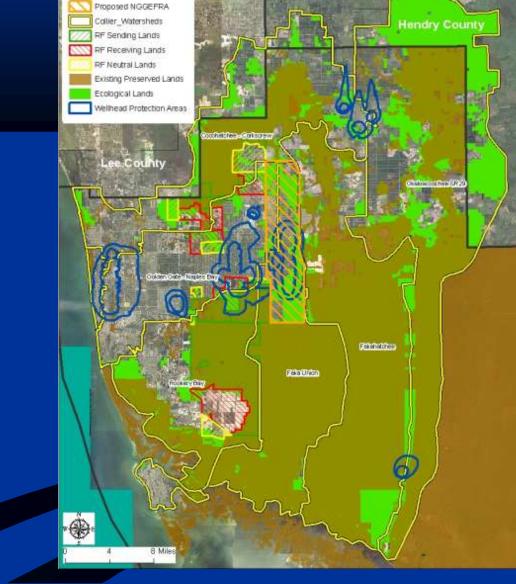
All Roads

Legend Legend Legend Study Area Chick Are initiation Level of Servic or Artenial Dri

Arterial Roads

Proposed Level of Service

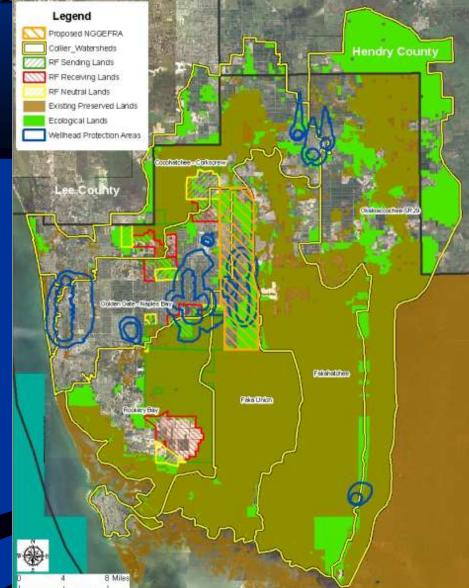
100-yr; 72-hr Storm 25-yr; 72-hr Storm 10-yr; 72-hr Storm Legend Legend Legend Study Area increased Level of Service toposed Level of Service thur All Deads or All Deads 00 yr; All Roads -



Recommended TDR Program for Golden Gate Estates

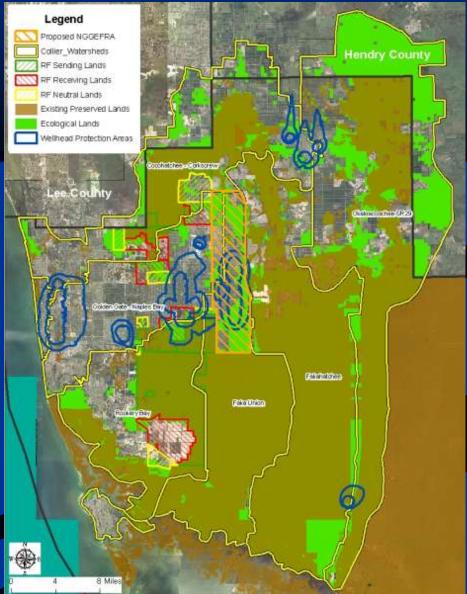
Legend

 Recommended Area includes
 valuable Ecological lands
 Wellhead protection area



TDR Program for GGE Key Components

- Distinct from existing TDR programs that have been ineffective Goal is to provide sufficient market attraction Utilize existing
 - receiving lands



TDR Program for GGE Benefits

- Allow transfer for urban infill
- Program is voluntary with incentives
- Use incentives to encourage aggregation of parcels
- Used for mitigation within the NGGE

TDR Program for GGE Next Steps

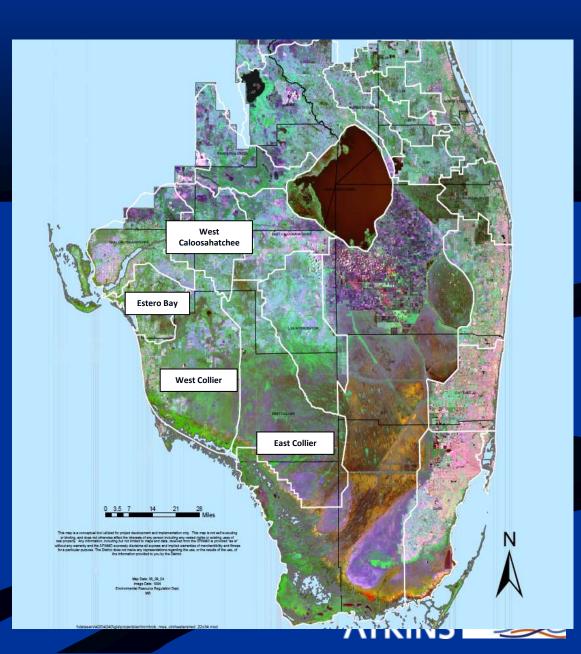
Establish 9 person Oversight Committee to develop specifics of the program Quantify the number of nonconforming and conforming parcels



TDR Program for GGE Key Issues to be Resolved

- Extent of the Protection Area
- Economics and Relationship to Existing TDR Program
 Receiving Lands
- Funding

TDR Program for GGE Conceptual Timeline


Task	Day to Complete
Policy Discussion Regarding NGGEFRA before EAC, CCPC, and BCC	90
Creation of Oversight Committee and Committee Work Period	250
Preparation of final draft GMP amendments for public hearings before EAC, CCPC, BCC (Transmittal Hearings) and Transmittal Hearings	150
DCA Review and issuance of Objection Recommendation and Comment (ORC) Report (issued 60 days after completion determination)	70
County review of ORC and Adjustments to address Objections (and Recommendations and Comments) (Note: Rule requires the adoption to occur within 60 days after receipt of ORC, but typically this is not accomplished within 60 days (given process requiring hearings before the EAC, CCPC and BCC) and DCA has been tolerant providing the County is working to address issues. Assuming Objections are not substantial, the County will simultaneously begin preparing LDC amendments.	120
DCA issues Notice of Intent (NOI) to find Plan Amendments in Compliance (or not) - within 45 days of receipt of a complete adopted plan amendment	50
LDC Amendment Final Preparation and hearings (again, EAC, CCPC, BCC)	100
Total Estimated Time for Completion	830

Mitigation Issues

 No regulatory mechanism to require mitigation within a
 functional watershed
 Economics determine where mitigation occurs

Recommendations to Establish Mitigation Area in NGGE

 Regional Offsite Mitigation Area located within proposed NGGE TDR

area

Phase I:

Permitted by FDEP for single family mitigation
 Acquisition funded through TDR, grants, sale of credits, or direct
 County funding

Recommendations to Establish Mitigation Area in NGGE

- Phase 2:
 - Permitted by SFWMD for public works projects
 - Funded by internal sale of credits (Collier County to Collier County)

Factors that Favor Mitigation Within the NGGE

Reduction in mitigation costs
Serves wetland restoration and stormwater attenuation goals
A regulatory precedent exists (Lee County)
Pending statewide rules affect water quality criteria and allow credit-trading

Recommended Additional Protection Areas

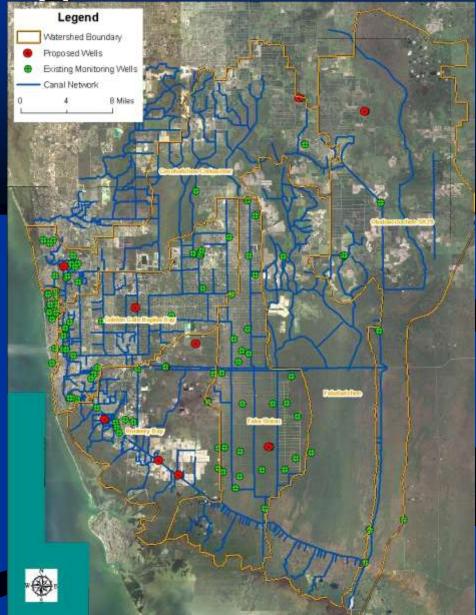
- Areas of localized restoration efforts
- Recyclable Water
 Containment agricultural areas
- Areas recommended for State acquisition

Monitoring Plan

Surface Water Monitoring

- Additional permanent monitoring stations
- Wet weather monitoring

program



ATKINS

Monitoring Plan

Groundwater Monitoring Confirm extent of estimated pollutant concentrations Coordinate with SFWMD for more regular sampling of wells in Picayune Strand and Okaloacoochee Slough Report DO data

Fertilizer Model Ordinance Requirements Training and Licensing Prohibited Period – Watches Application Rate – Label requirement Fertilizer Free Zone – Voluntary 10 feet Low Maintenance Area (buffers) Exemptions – Agriculture Application Practices – No fertilizer on impervious

Provisions Considered

- Black Out Period June 1 Sept 30
- Reduction in N load to 4 lbs/1000 ft/yr
- 50 % Slow Release Nitrogen
- Mandatory 10 ft Buffer for Water Bodies

FDEP - Watershed Restoration Bureau Chief

- Rainy Season Ban Science incomplete
- Irrigation program to maintain slight Irrigation deficit
- Decompaction of urban landscape soils to decrease runoff
- Ensure citizens aware of saturated soil conditions
- 4 lb N per year Less than minimum for Bermuda grass in S Fla

Dept. Agriculture & Consumer Servc.

 Absent of scientific confirmation of need for more stringent standards recommend Model Ordinance

Proposed restrictions jeopardize turf health and filtration capabilities

U of Fl IFAS Chair of Environmental Horticulture Department

- Science supports fertilization during growth period (June – Sept) – minimal N loss
- UF-IFAS recommends 30% SRN at 1 lb per application until documentation supports higher
- Soluble N at proper rates have low leaching rates
- Proper irrigation important
- Keep plant debris off impervious

Staff Recommendation

Scientific support for Model Ordinance
Lack of clear scientific support for more stringent fertilizer ordinance
Model Ordinance and Public Education
Include Collier buffer requirements
Future evaluation of local conditions

Education Program

- Education for residents web and TV
- Ordinance requirements and guidance at retail
- Irrigation awareness
- Precipitation awareness
- Re-Use Nutrient awareness

Wrap Up

If you didn't sign in, please do so
 Include your E-mail address and Phone Number
 Comments via E-Mail
 machatcher@colliergov.net Formal position papers

Please mail to Mac Hatcher

