

Watershed

Management Plan

January 20, 2011

- Background
- Model Development
- Existing Conditions Evaluation
 - Water Quantity
 - Water Quality

Break

- Natural Systems Evaluation
- Fertilizer Ordinance

Watershed Planning

- Pre 1960 Major Roads with canals adjacent
- 1960s Golden Gate Drainage canals
- 1970s Reactions to flooding and over drainage
- 1980s Stormwater basin planning
- 1990s GMP Policy; Stormwater Master Plan
- 2000 BCB Watershed Plan
- 2006 GMP EAR Amendment commitment

Project Objectives

- Develop watershed management plans that will help protect estuaries and wetland systems to
 - Restore historical water quantity and estuarine discharges
 - Improve water quality within the watersheds and estuaries
 - Address flood control and water supply issues.
- Project will be completed in December 2010.

Project Specific Tasks

- Update the BCB hydrologic/hydraulic computer model
- Evaluate watershed and estuarine existing conditions
 - Water quantity
 - Water quality
 - Natural resources
- Define performance measures
- Evaluate alternatives and identify recommended improvement projects
- Prepare Watershed Management Plans

Project Team Organization

Collier County

Project Manager – Moris Cabezas, Ph.D., P.E. – PBS&J

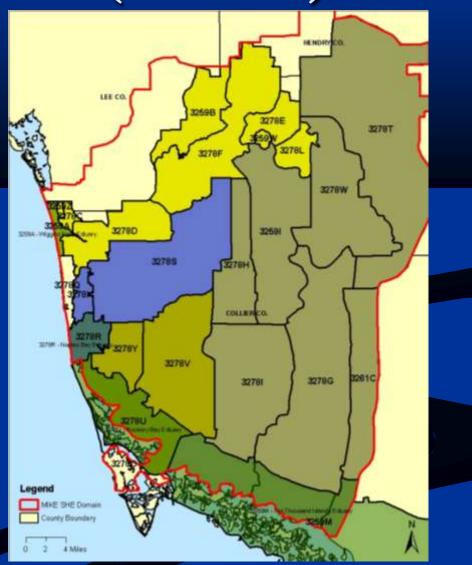
QA/QC

Watershed Modeling Tim Hazlitt, P.G. - DHI Preston Manning – DHI Peter deGolian – PBS&J Water Resource Evaluation Dave Tomasko, Ph.D. – PBS&J Peter deGolian – PBS&J Eric Fontenot, P.E. - DHI Natural Systems Evaluation Ed Cronyn – PBS&J Dave Tomasko, Ph.D. – PBS&J


Other Support Services

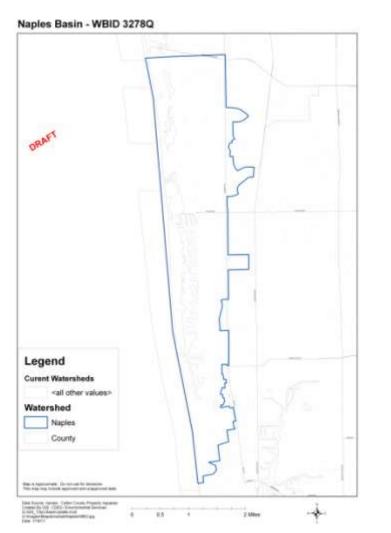
Watersheds

Top Priority Watersheds Cocohatchee Corkscrew Golden Gate Rookery Bay Additional Watersheds ■ Faka Union ■ Fakahatchee ■ Okaloacoochee SR 29 **Estuaries**



Water Body IDs (WBIDs)

FDEP Run 40 Coastal WBIDs clipped to match model extent **WBID 3259M** subdivided by watershed



Clam Bay / Moorings Bay

Naples WIBID
3278 Q

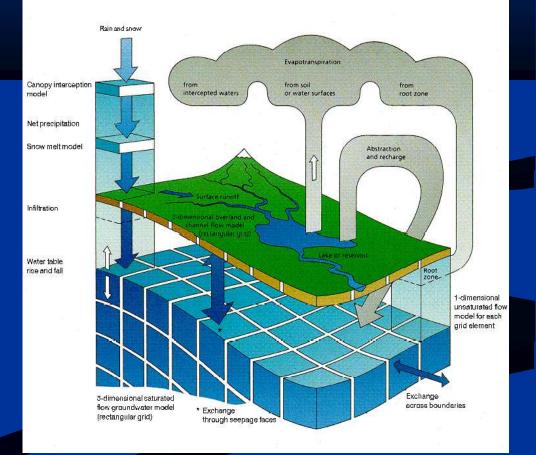
Estuary

Class 2

Water Quantity Analysis

Objective

 Assess the deficit or surplus of freshwater discharges to each estuarine system from the contributing watersheds



Existing Conditions Model

MIKE SHE

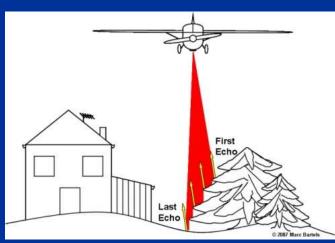
 Integrated surface water and groundwater model
 Simulation period is 2002 – 2007

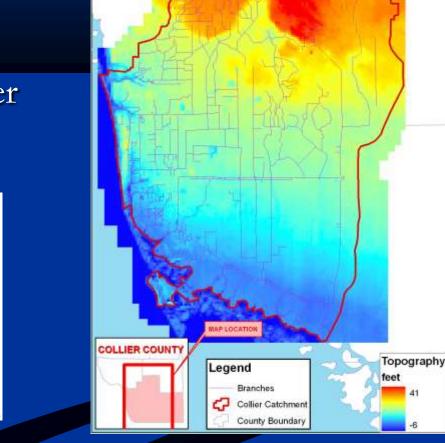
an Integrated Hydrological Modelling System

Computer Model Grid

 Consistent with previous Big Cypress Basin models

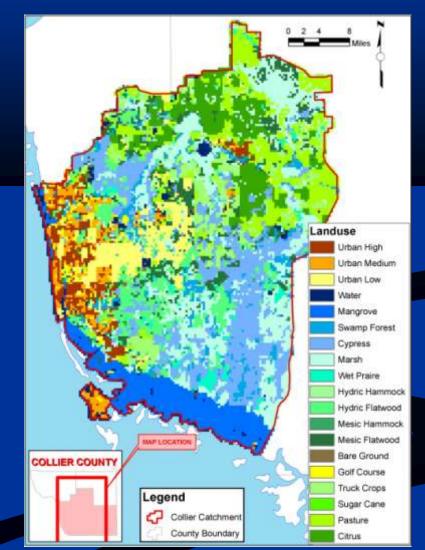
Model area is 1400 square miles
Grid size is 1500 feet





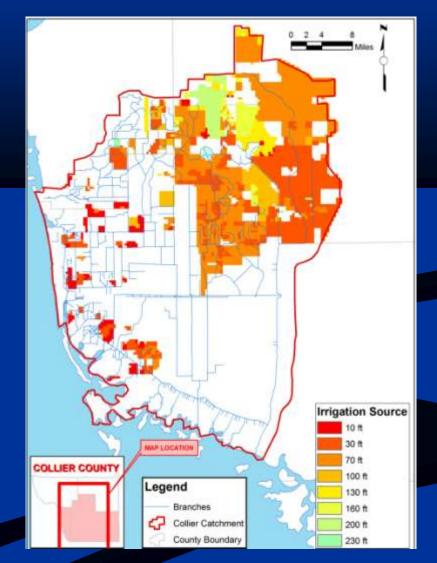
Topography

- LiDAR generated
 5-ft digital elevation model (DEM)
- Elevation averaged over grid cell



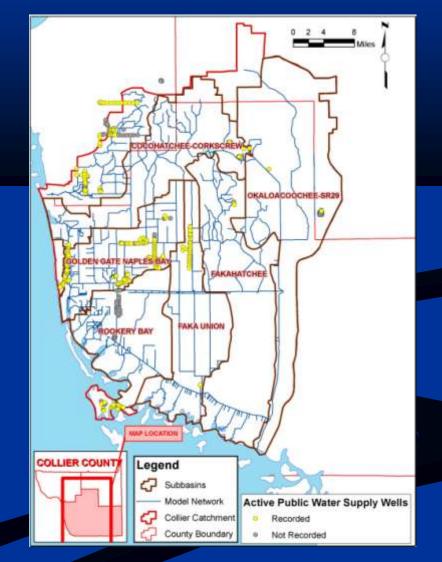
Land Use

Land use categories developed from **FLUCCS** classifications Hydrologic parameters are assigned based on land use categories



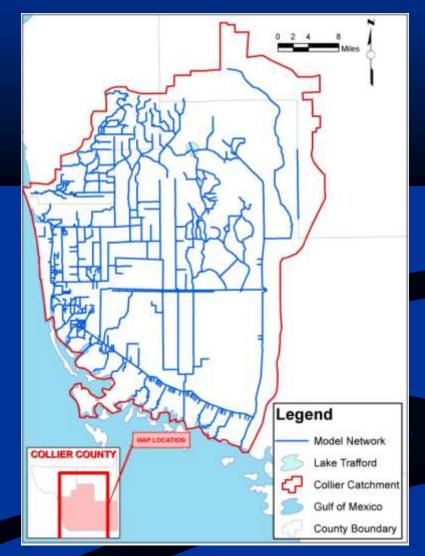
Irrigation

- Irrigation volume is determined by soil moisture
- Application rate and source defined by water use permits



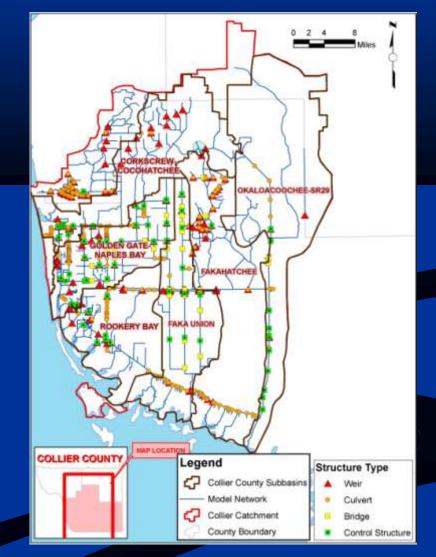
Water Supply Wells

Primary users City of Naples Collier County Marco Island Timing and volume is determined by withdrawal information provided by SFWMD



Canal and Stream Network

- 825 miles of rivers, streams and canals
- Primary drainage
 network managed by
 BCB
- Collier County secondary canals
- Imperial River drainage



Control Structures

Flow and water levels are controlled to maintain desired instream conditions Structures include weirs, culverts, bridges and gates

Control Structures Operations

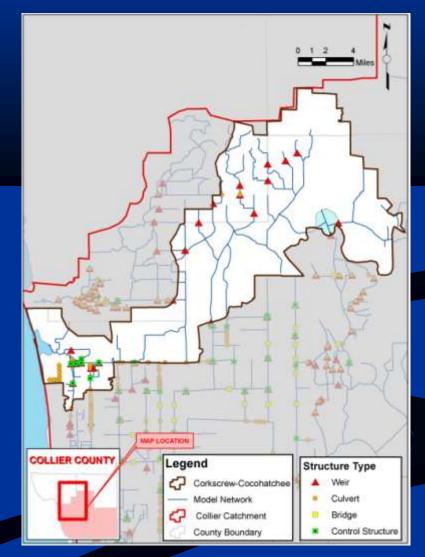
Cocohatchee Canal Structure 1

Rules:

Dry season- Head water elevation desired at \approx 4.8 feet NAVD.

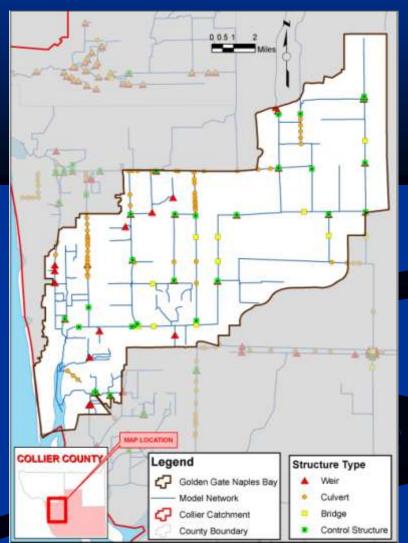
Above 5.5 feet, gates open. Below 4.0 feet, gates close.

Wet season- Head water elevation desired at \approx 4.3 feet NAVD.


Above 5.5 feet, gates open. Below 2.8 feet, gates close.

Cocohatchee Corkscrew

- Primarily natural areas in the upper basin
- Water transfers with Golden Gate and Imperial River watersheds

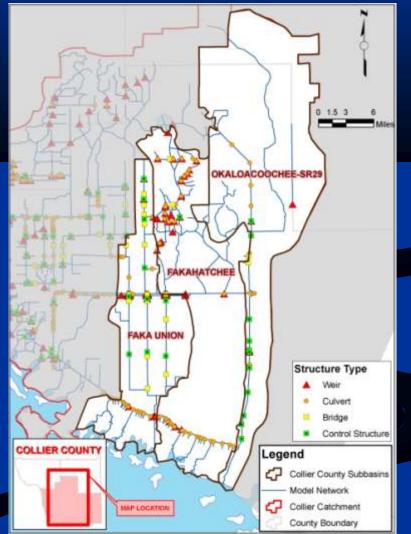


Golden Gate

- Mainly Urban Land Uses
- Discharges to Naples Bay
- Drainage pattern changed due to development

Rookery Bay

 Includes natural areas, agricultural lands, and urban
 development
 Overland flow and channel flow

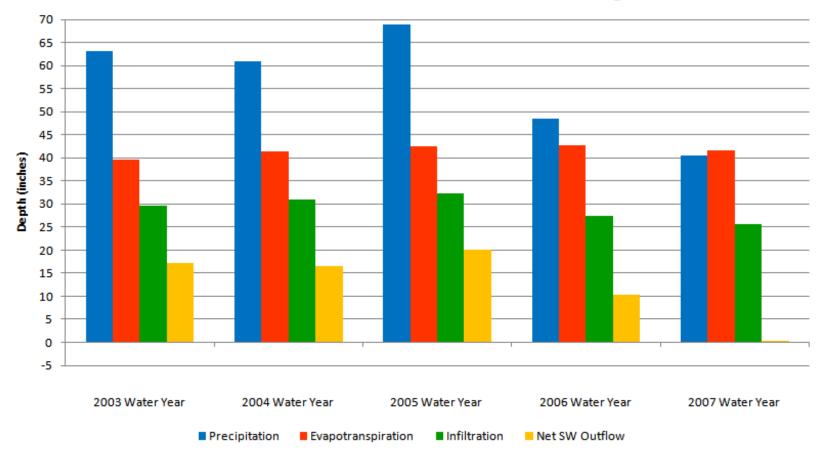


Faka Union, Fakahatchee, Okaloacoochee – SR29

- Primary drainage features:
 - Miller Canal
 - Faka Union Canal
 - Merritt Canal
 - SR 29 Canal
- Picayune Strand Restoration Project

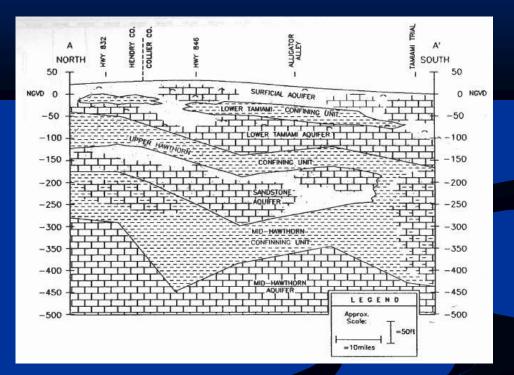
Surface Water Budget

- Prepared for each watershed
- Budget Components
 - Precipitation/ET
 - Infiltration
 - Surface Runoff
- Prepared for water year and wet and dry seasons



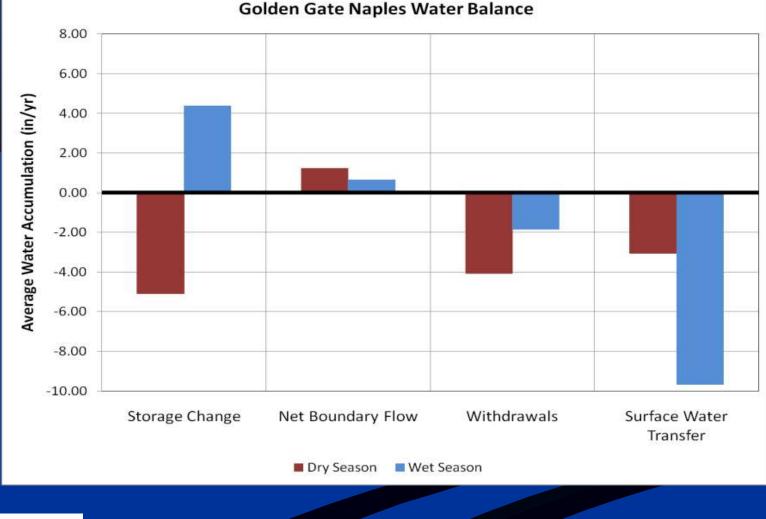
Surface Water Budget

Cocohatchee-Corkscrew Surface Water Budget

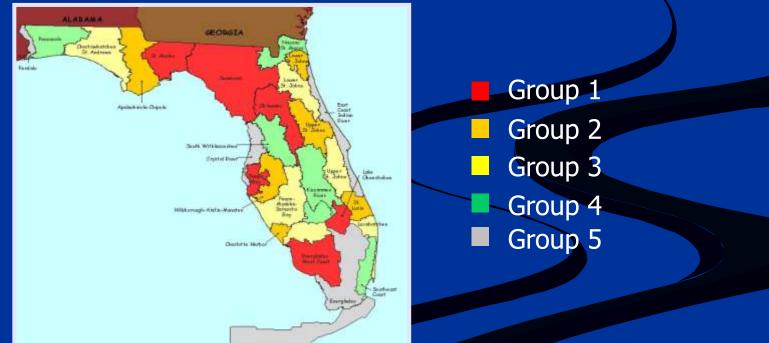


Groundwater Budget

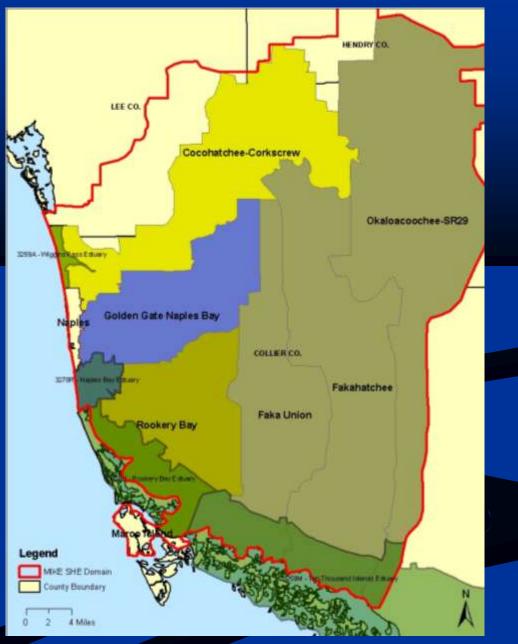
Budget Components


- Flows across watershed boundaries
- Withdrawals
- Change in storage
- Surface water interaction
- Average for wet and dry seasons

Groundwater Budget



Water Quality

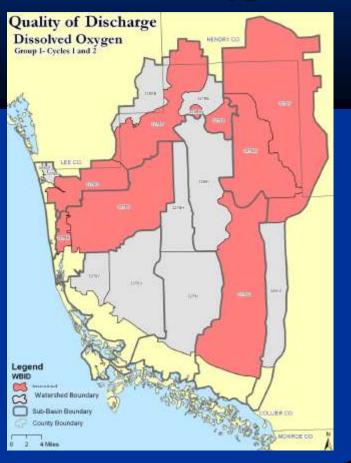

- WBIDs, TMDL Process
- Watersheds, Impairments, DO, Nutrients
 - Estuaries

Efforts focused on six main watersheds, and the estuaries influenced by them

TMDL process

- FDEP-led process with 5 basic phases
 - Assess the quality of surface waters--are they meeting water quality standards?
 - Determine which waters are impaired--which ones are not meeting water quality standards
 - Establish and adopt, by rule, a TMDL for each impaired water for the pollutants of concern
 - Develop a Basin Management Action Plan (BMAP)
 - Implement the strategies and actions in the BMAP

Within the watersheds themselves, 15 WBIDimpairment combinations


WBID#	WBID Name	Impaired Parameter	Watershed
3259W	Lake Trafford	Dissolved Oxygen	Cocohatchee-Corkscrew
3259W	Lake Trafford	Mercury	Cocohatchee-Corkscrew
3259W	Lake Trafford	Nutrients	Cocohatchee-Corkscrew
3259W	Lake Trafford	Un-ionized Ammonia	Cocohatchee-Corkscrew
3278D	Cocohatchee Inland	Dissolved Oxygen	Cocohatchee-Corkscrew
3278F	Corkscrew Marsh	Dissolved Oxygen	Cocohatchee-Corkscrew
3278L	Immokalee Basin	Dissolved Oxygen	Cocohatchee-Corkscrew
3278K	Gordon River Extension	Dissolved Oxygen	Golden Gate - Naples Bay
3278S	North Golden Gate	Dissolved Oxygen	Golden Gate - Naples Bay
3278S	North Golden Gate	Iron	Golden Gate - Naples Bay
3278G	Fakahatchee Strand	Dissolved Oxygen	Fakahatchee
3278G	Fakahatchee Strand	Fecal Coliform	Fakahatchee
3261C	Barron River Canal	Iron	Okaloacochee-SR29
3278T	Okaloacoochee	Dissolved Oxygen	Okaloacochee-SR29
3278W	Silver Strand	Dissolved Oxygen	Okaloacochee-SR29

Watersheds Spatial extent of impairments

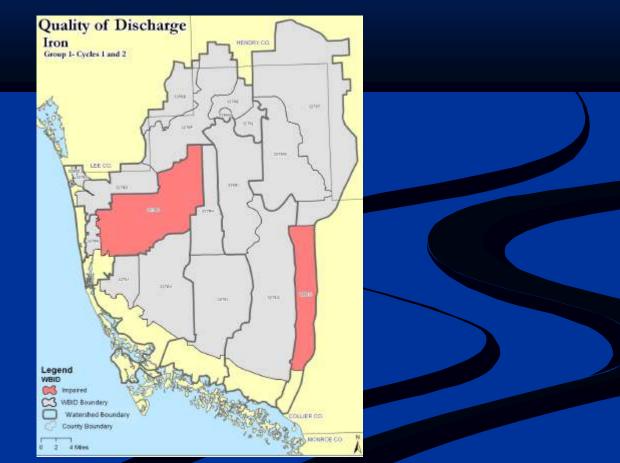
Dissolved Oxygen

Nutrients (Chl-a)

Watersheds Spatial extent of impairments

Fecal Coliform Bacteria

Un-ionized Ammonia



Watersheds Spatial extent of impairments

Iron

General findings - watersheds

Lake Trafford had most impairments DO, nutrients (Chl-a), un-ionized ammonia North Golden Gate and Fakahatchee Strand were second highest impairments Most common impairment was for dissolved oxygen (DO) 9 of 15 impairments were for low DO Iron was second most common impairment North Golden Gate and Barron River Canal

Impairments listed by FDEP also assessed for the estuarine receiving water bodies

WBID#	WBID Name	Receiving Water
3259A	Cocohatchee River	Wiggins Pass
3278R	Naples Bay (Coastal Segment)	Naples Bay
3278U	Rookery Bay (Coastal Segment)	Rookery Bay
3259M	Ten Thousand Islands	Ten Thousand Islands

Estuaries Spatial extent of impairments

Dissolved Oxygen

ollier County

Nutrients (Chl-a)

Estuaries Spatial extent of impairments

Fecal Coliform Bacteria

Estuaries Spatial extent of impairments

Iron

Copper

LUER CO.

MONROE CO

General findings - estuaries

Naples Bay had most impairments DO, fecal coliform bacteria, iron, copper Rookery Bay had second highest impairments DO, nutrients (Chl-a), fecal coliform bacteria Most common impairments were DO and fecal coliform bacteria Iron as second most common impairment

Naples Bay and Wiggins Pass

Issues for Collier County

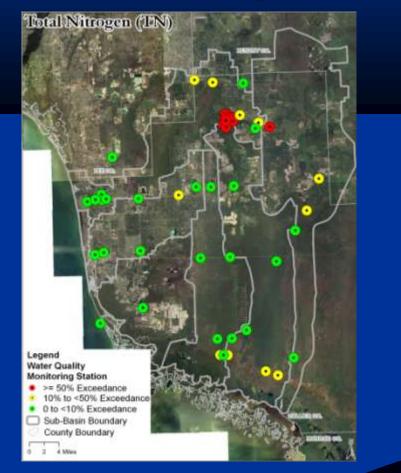
Are standards appropriate?

- Does existing DO standard make sense in SW Florida?
- Class II standards for bacteria in marine waters
- Are locations sampled representative of system being assessed?
- Are portions of Collier County truly problematic, or is TMDL process flawed?

Appropriateness of standards Dissolved Oxygen

- Florida's Surface Water Quality Standard (Rule 62-302, F.A.C.) states that, for Class III freshwater –
 - Shall not be less than 5.0 (mg/L). Normal daily and seasonal fluctuations above these levels shall be maintained.
- For Class II and III marine water -
 - Shall not average less than 5.0 in a 24-hour period and shall never be less than 4.0. Normal daily and seasonal fluctuations above these levels shall be maintained.
- Problems
 - DO often fails standard in "undeveloped" locations
 DO shows strong evidence of influence from wetlands, rather than human-induced

Developing Nutrient Criteria


- No state standards for nutrients
 - FDEP proposed, but not adopted
 - EPA's Numeric Nutrient Criteria due late 2011
- Default FDEP approach is to develop screening levels per waterbody type as 70th percentile value state-wide
- Alternative approach use TN and TP targets from Gordon River TMDL
 - Based on DO due to nutrients (not necessarily the case)
 - Gordon River reference sites also fail standard
 - Developed as 75th percentile of Everglades reference sites

Frequency of exceeding 70th percentile values statewide for lakes and/or stream within watershed

TN of 1.6 mg / L

TP of 0.22 mg / L

Frequency of exceeding 75th percentile values for Gordon River TMDL reference sites for streams

TN of 0.74 mg / L

TP of 0.04 mg / L

Nutrient issues within Collier County

- Lake Trafford obviously impaired
 - But also improving water quality with dredging project
- For most of Collier County "impairment" for nutrients really means Chl-a higher than standards
 - Rookery Bay "impairment" likely due to 2006 sample sites
- Based on TN and TP screening using 70th percentile values statewide, nutrients not much of a concern in Collier County
- Based on TN and TP screening using 75th percentile values from Gordon River TMDL reference sites, nutrients elevated throughout much of County
 - But nutrient thresholds based on DO "impairment" caused by nutrients

Water Quality General Conclusions

- Dissolved oxygen
 - Lots of impairments, most likely due to large ground water contribution and color
 - Value to creating locally-relevant standard
- Fecal coliform bacteria
 - Lots of impairments, often due to Class II standards
 Is shellfish harvesting rather than recreational use / bodily contact the most appropriate classification?
 - Appropriate to have source identification efforts

Water Quality General Conclusions

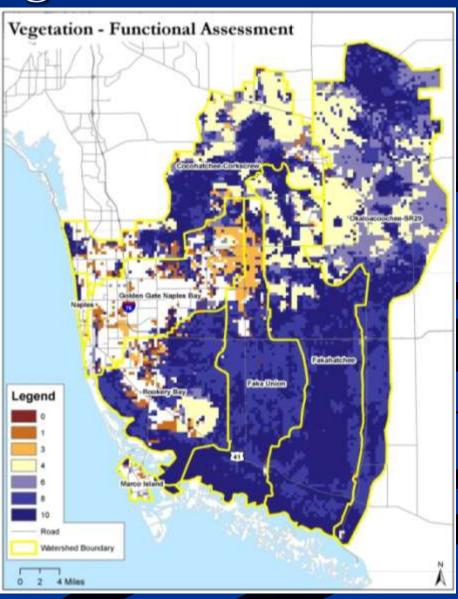
- Nutrients (chlorophyll-a)
 - Impairment in Rookery Bay likely not realistic
 - Nutrient levels not very high in watershed
 - Level of concern over nutrients depends on screening criteria used
 - State-wide approach not much of a problem
 - Reference sites in Everglades approach more of a problem
- Various metals
 - Copper could be herbicide use
 - Iron likely from groundwater

Functional Assessment

- Existing condition evaluated for:
 - Vegetation
 - Hydrology
 - Landscape Suitability Index (landscape position)

Vegetation Score Methodology

Concept – assume that pre-development vegetation communities provide optimal functional value
 For watershed-level application
 2007 FLUCCS compared to PDVM

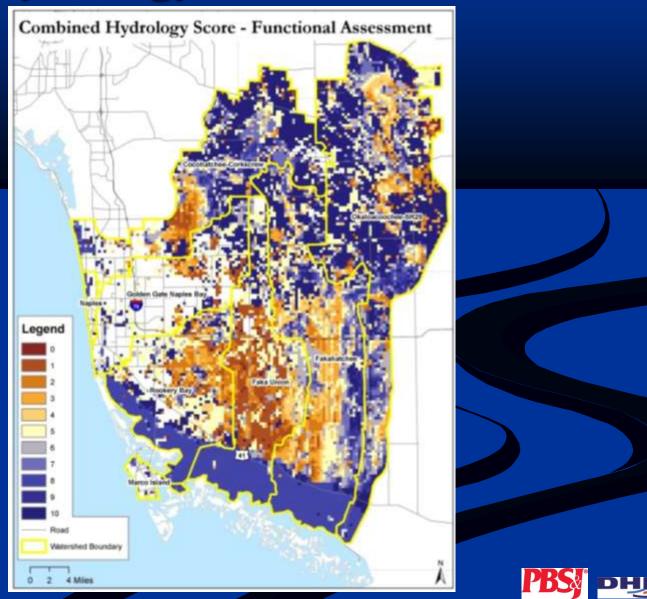

Vegetation Score by Category

Model Land Use Type	MIKE SHE Model Code	FLUCCS Code	Vegetation Score
Citrus	1	221, 222, 223	4
Pasture	2	211, 212, 213, 251, 260, 261, 832	6
Pasture	2	190,192, 193 (urban abandoned)	1
Sugar Cane & Sod	3	2156, 242	4
Truck (Row) Crops	5	214, 215, 216	4
Golf Course	6	180, 182	1
Bare Ground	7	161, 162, 163, 164, 181, 231, 740, 743, 744, 8113, 8115, 835	0
Urban Low Density	41	110, 111, 112, 113, 119, 148, 185, 240, 241, 243, 250	1
Rural Residential Low Density	41	118	3
Urban Medium Density	42	120, 121, 122, 123, 129, 176, 834	1
Urban High Density	43	130, 131, 132, 133, 134, 135, 139, 140, 1411, 1423, 146, 149, 154, 155, 156, 170, 171, 183, 184, 187, 252, 810, 811, 814, 820, 831, 833	0

Vegetation Score Results

Hydrology Score Methodology

- Concept locations with similar water depths and hydroperiods over time provide optimal functional value
- Process: Compare existing conditions model hydrology against hydrology of PDVM vegetation
- Scoring computer based on:
 - Hydro-period
 - Seasonal Water Level

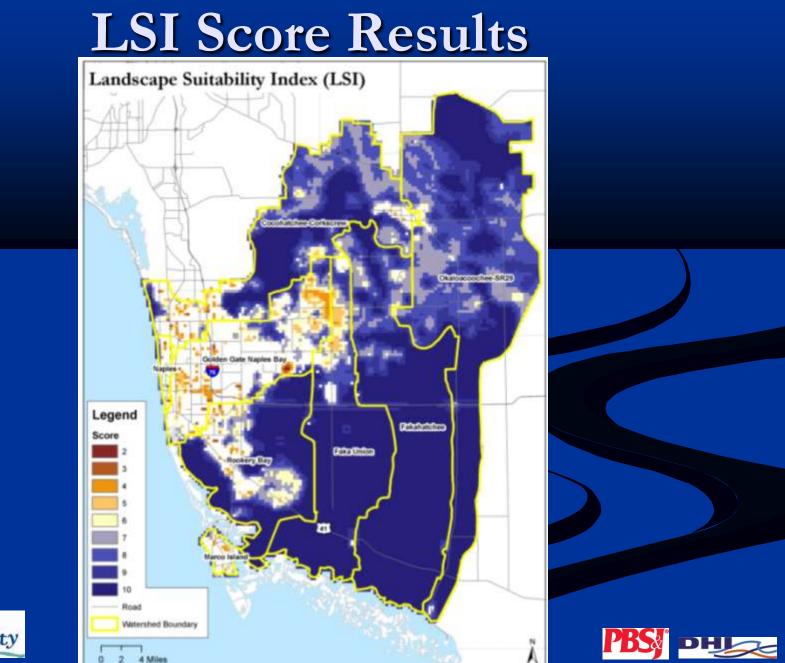

PDVM Hydrology (Duever, 2004)

SW Florida Plant Communities	Hydroperiod (months)	Seasonal Water Level (inches)		
	(montens)	Wet	Dry (1,10)*	
Xeric Flatwood	0	≤-24	-60, -90	
Xeric Hammock	0	—		
Mesic Flatwood	<u><</u> 1	<u>≤</u> 2	-46, -76	
Mesic Hammock				
Hydric Flatwood	1 - 2	2 - 6	-30, -60	
Hydric Hammock		2-0		
Wet Prairie	2 - 6	6 - 12	-24, -54	
Dwarf Cypress		0-12		
Freshwater Marsh	6 - 10	12 - 24	-6, -46	
Cypress	6 - 8	12 - 18	-16, -46	
Swamp Forest	8 - 10	18 - 24	-6, -36	
Open Water	>10	<u>></u> 24	< 24, -6	
Tidal Marsh	Tidal	Tidal	Tidal	
Mangrove	Tidai			
Beach				
* 1 = average year low water			L L 2002	
10 = 1 in 10 year drought			July 2002	

Hydrology Score Results

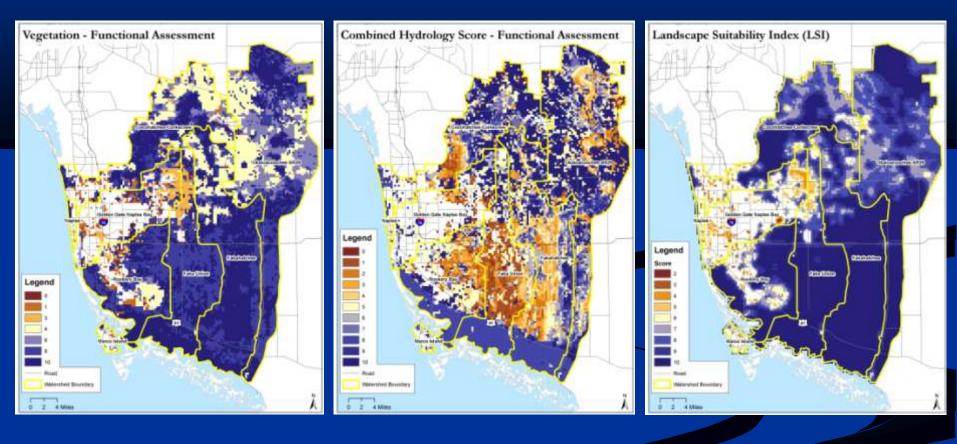
Landscape Suitability Index Methodology

- Concept evaluate habitat based on surrounding landuse
- Developed by Center for Wetlands (UF)
- For watershed-level application
 - 2007 FLUCCS into 1500 x 1500 foot cells
 - LSI for each cell calculated based on scores of adjacent cells
 - Scores reported by WBID and watershed



LSI Coefficients

Land Use/Land Cover	LSI Coefficients		
Natural System	10.00		
Natural Open water	10.00		
Pine Plantation	9.36		
Recreational / Open Space (Low-intensity)	9.08		
Woodland Pasture (with livestock)	8.87		
Pasture (without livestock)	8.03		
Low Intensity Pasture (with livestock)	7.32		
Citrus	7.02		
High Intensity Pasture (with livestock)	6.96		
Row crops	6.07		
Single Family Residential (Low-density)	3.57		
Recreational / Open Space (High-intensity)	3.42		
High Intensity Agriculture (Dairy farm)	3.33		
Single Family Residential (Med-density)	2.81		
Single Family Residential (High-density)	2.72		
Mobile Home (Medium density)	2.56		
Highway (2 lane)	2.43		
Low Intensity Commercial	2,22		
Institutional	2.14		
Highway (4 lane)	1.91		
Mobile Home (High density)	1.90		
Industrial	1.87		
Multi-family Residential (Low rise)	1.49		
High Intensity Commercial	0.91		
Multi-family Residential (High rise)	0.90		
Central Business District (Average 2 stories)	0.64		
Central Business District (Average 4 stories)	0.00		



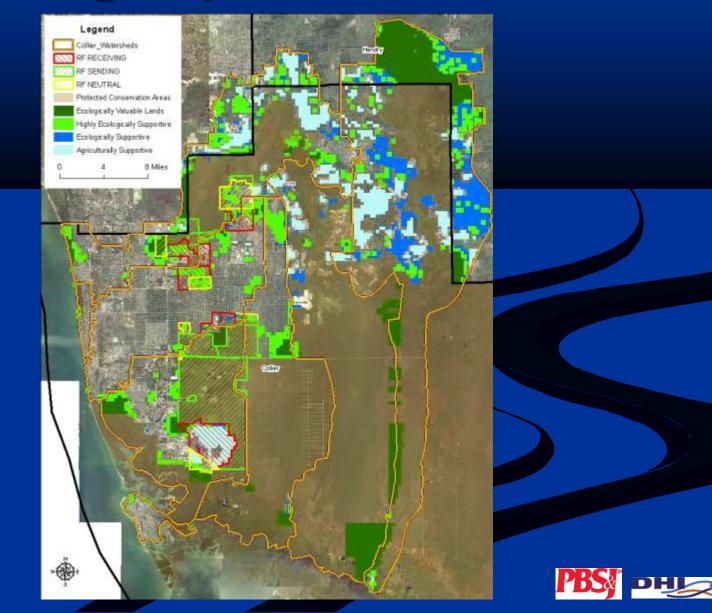
Functional Assessment Scores

Vegetation

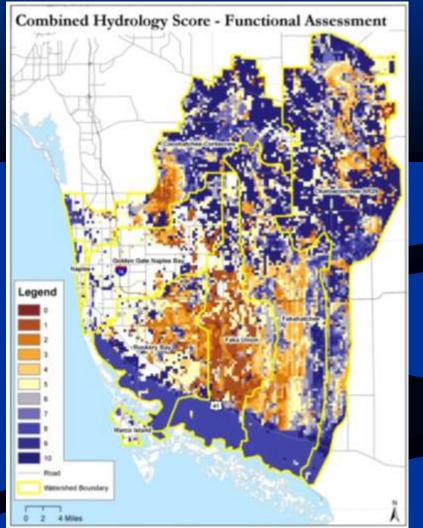
Hydrology

Application of Results

 Evaluation of Ecologically Valuable Lands
 Evaluation of Project Performance (Performance Measures)

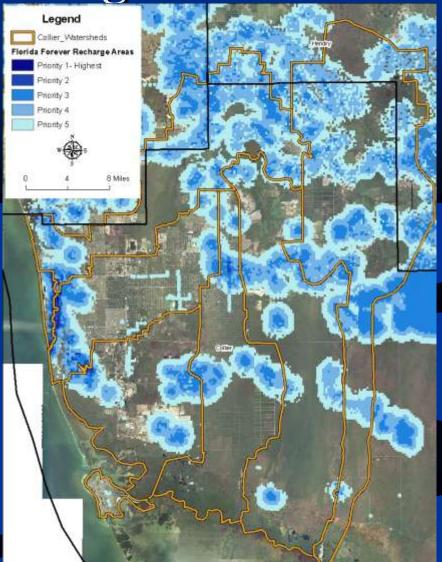


Evaluation of Ecologically Valuable Lands Based on Vegetation and LSI scores Ecologically Valuable Lands: • Vegetation Score = 8 - 10■ LSI Score = 10Ecologically Supportive Lands: • Vegetation Score = 6 - 8 \blacksquare LSI Score = 8 – 10 Agricultural Supportive Lands: • Vegetation Score = 4 - 6 \blacksquare LSI Score = 6 - 8

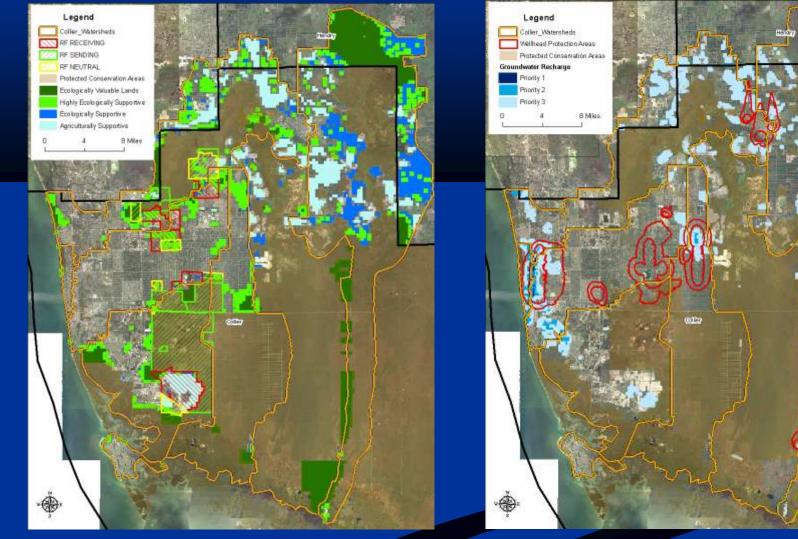

Ecologically Valuable Lands

Natural Systems Performance Measure

 Projects being evaluated based on improved hydrology



Groundwater Recharge Areas


- Priority recharge areas defined by Florida Forever
- Consistent with recharge results from NSM model
 Important for future development and aquifer protection

Groundwater Recharge Areas

Recommendations for Additional Protection

- Expand Rural Fringe Sending Lands into NGGE
- Re-evaluate RF Neutral Lands in high value ecological areas
- Utilize LID policies to protect high recharge areas.
- Coordinate with SFWMD for land along SR 29

Model Ordinance Requirements

- Training and Licensing
- Prohibited Period Watches
- Application Rate Label requirement
- Fertilizer Free Zone Voluntary 10 feet
- Low Maintenance Area (buffers)
- Exemptions Agriculture
- Application Practices No fertilizer on impervious

Comparison with Existing Ordinances

Ordinance	FDEP/DACS/UF	City of Naples	SWFRPC	Lee County	CSWF
Training	Applicators	Applicators	Applicators	Applicators	Applicators
License	Applicators	Applicators	Applicators	Applicators	Applicators
Prohibited Period	Watches	June-Sept	June-Sept	June-Sept	Watches + June- Sept
Application Rate	Label Req: 2-7 lbs N per yr based on species; not > 1 lb N per application; 0.5 lb P per year	ner $vr \leq =2 \% P$	<=2 % P, 70 % slow N, no blended fertilizer<= 6 times / year	50 % Slow N, 0.50 lbs. P per yr, 4 lbs. of N per year	50 % Slow N, 4 lbs. of N per yr No P, 0.50 lbs. P per yr,
Fertilizer Free Zone	10 ft (3ft w deflect)	10 ft	25 ft	10 ft	10 ft
Exceptions	Agriculture, research	Agriculture + vegetables	Agriculture	Agriculture; new plants; vegetables	Agriculture + various others
Enforcement	Applicators	Applicators	Applicators	Applicators	Applicators
Others		Sales			Sales

Development Standards Review

Help implement a Sustainable Stormwater
 Management Program

The programs should aim to:

- Promote more effective site planning to minimize anthropogenic impacts,
- Promote preservation of the natural system
- Help reduce development costs
- Help reduce cost of future drainage system improvements

What's Next

 Alternatives Analysis
 Preparation of Watershed
 Management Plans

Watershed Management Plans

Separate Watershed Management Plans for each watershed.

- Cocohatchee-Corkscrew
- Golden Gate Naples Bay
- Rookery Bay
- Additional Watersheds
- Target date for submittal to Collier County is April 2011.

Long-Term

Plan

Wrap Up

If you didn't sign in, please do so Include your E-mail address and Phone Number Comment Cards for Mangrove Action Group **Comments via E-Mail** machatcher@colliergov.net Formal position papers Please mail to Mac Hatcher

